896 resultados para Oil debris analysis
Resumo:
Crude oil and natural gas have been essential energy sources and play a crucial role in the world economy. Changes in energy prices significantly impact economic growth. This study builds an econometric model to illustrate the substitute relation between crude oil and natural gas markets. Additionally, the determination of the oil and natural gas prices are endogenized, assuming imperfect competition to reflect a real market strategy. Our empirical results show that the overall performance of this system is acceptable, and the model can be applied to policy analysis for determining monetary or energy policy by introducing this model to the more comprehensive system.
Resumo:
In this study, forward seismic modelling of four geological models with Hydrocarbon (HC) traps were performed by ray tracing method to produce synthetic seismogram of each model. The idea is to identify the Hydrocarbon Indicators (HCI‟s) such as bright spot, flat spot, dim spot and Bottom Simulating Reflector (BSR) in the synthethic seismogram. The modelling was performed in DISCO/FOCUS 5.0 seismic data processing programme. Strong positive and negative reflection amplitudes and some artifact reflection horizons were observed on produced seismograms due to rapid changes in subsurface velocity and geometry respectively Additionally, Amplitude-versus-angle (AVA) curves of each HCIs was calculated by the Crewes Zoeppritz Explorer programme. AVA curves show that how the reflection coefficients change with the density and the P and S wave velocities of each layer such as oil, gas, gas hydrate or water saturated sediments. Due to AVA curves, an increase in reflection amplitude with incident angle of seismic waves corresponds to an indicator of a hydrocarbon reservoir
Resumo:
Contaminated soil reuse was investigated, with higher profusion, throughout the early 90’s, coinciding with the 1991 Gulf War, when efforts to amend large crude oil releases began in geotechnical assessment of contaminated soils. Isolated works referring to geotechnical testing with hydrocarbon ground contaminants are described in the state-of-the-art, which have been extended to other type of contaminated soil references. Contaminated soils by light non-aquous phase liquids (LNAPL) bearing capacity reduction has been previously investigated from a forensic point of view. To date, all the research works have been published based on the assumption of constant contaminant saturation for the entire soil mass. In contrast, the actual LNAPLs distribution plumes exhibit complex flow patterns which are subject to physical and chemical changes with time and distance travelled from the release source. This aspect has been considered along the present text. A typical Madrid arkosic soil formation is commonly known as Miga sand. Geotechnical tests have been carried out, with Miga sand specimens, in incremental series of LNAPL concentrations in order to observe the soil engineering properties variation due to a contamination increase. Results are discussed in relation with previous studies and as a matter of fact, soil mechanics parameters change in the presence of LNAPL, showing different tendencies according to each test and depending on the LNAPL content, as well as to the specimen’s initially planned relative density, dense or loose. Geotechnical practical implications are also commented on and analyzed. Variation on geotechnical properties may occur only within the external contour of contamination distribution plume. This scope has motivated the author to develop a physical model based on transparent soil technology. The model aims to reproduce the distribution of LNAPL into the ground due to an accidental release from a storage facility. Preliminary results indicate that the model is a potentially complementary tool for hydrogeological applications, site-characterization and remediation treatment testing within the framework of soil pollution events. A description of the test setup of an innovative three dimensional physical model for the flow of two or more phases, in porous media, is presented herein, along with a summary of the advantages, limitations and future applications for modeling with transparent material. En los primeros años de la década de los años 90, del siglo pasado, coincidiendo con la Guerra del Golfo en 1991, se investigó intensamente sobre la reutilización de suelos afectados por grandes volúmenes de vertidos de crudo, fomentándose la evaluación geotécnica de los suelos contaminados. Se describen, en el estado del arte de esta tésis, una serie de trabajos aislados en relación con la caracterización geotécnica de suelos contaminados con hidrocarburos, descripción ampliada mediante referencias relacionadas con otros tipos de contaminación de suelos. Existen estudios previos de patología de cimentaciones que analizan la reducción de la capacidad portante de suelos contaminados por hidrocarburos líquidos ligeros en fase no acuosa (acrónimo en inglés: LNAPL de “Liquid Non-Aquous Phase Liquid”). A fecha de redacción de la tesis, todas las publicaciones anteriores estaban basadas en la consideración de una saturación del contaminante constante en toda la extensión del terreno de cimentación. La distribución real de las plumas de contaminante muestra, por el contrario, complejas trayectorias de flujo que están sujetas a cambios físico-químicos en función del tiempo y la distancia recorrida desde su origen de vertido. Éste aspecto ha sido considerado y tratado en el presente texto. La arena de Miga es una formación geológica típica de Madrid. En el ámbito de esta tesis se han desarrollado ensayos geotécnicos con series de muestras de arena de Miga contaminadas con distintas concentraciones de LNAPL con el objeto de estimar la variación de sus propiedades geotécnicas debido a un incremento de contaminación. Se ha realizado una evaluación de resultados de los ensayos en comparación con otros estudios previamente analizados, resultando que las propiedades mecánicas del suelo, efectivamente, varían en función del contenido de LNAPL y de la densidad relativa con la que se prepare la muestra, densa o floja. Se analizan y comentan las implicaciones de carácter práctico que supone la mencionada variación de propiedades geotécnicas. El autor ha desarrollado un modelo físico basado en la tecnología de suelos transparentes, considerando que las variaciones de propiedades geotécnicas únicamente deben producirse en el ámbito interior del contorno de la pluma contaminante. El objeto del modelo es el de reproducir la distribución de un LNAPL en un terreno dado, causada por el vertido accidental de una instalación de almecenamiento de combustible. Los resultados preliminares indican que el modelo podría emplearse como una herramienta complementaria para el estudio de eventos contaminantes, permitiendo el desarrollo de aplicaciones de carácter hidrogeológico, caracterización de suelos contaminados y experimentación de tratamientos de remediación. Como aportación de carácter innovadora, se presenta y describe un modelo físico tridimensional de flujo de dos o más fases a través de un medio poroso transparente, analizándose sus ventajas e inconvenientes así como sus limitaciones y futuras aplicaciones.
Resumo:
Links between phenology, yield and composition of the essential oil of common sage, Salvia officinalis L., grown in Guadalajara (Central Spain) were determined in the different phases of the biological cycle during one year. Data showed an average yield about 1.0%. The analysis of the oil components was carried out by GC-FID and GC/MS. The main oil constituent was alpha thujone (40.1 - 46.5%). Other identified compounds are beta pinene (2.6 - 4.5%), cineole (3.5 - 8.7%), beta thujone (4.1 - 5.6%), camphor (4.1 - 8.0%), borneol (1.3 - 3.7%), alpha humulene (3.8 - 7.3%), viridiflorol (3.4-12.6%) and manool (0.1-4.5%). The highest yield of oil was obtained in the period of full flowering and the highest concentration of alpha thujone in the period of initial flowering.
Resumo:
The design of an electrodynamic tether is a complex task that involves the control of dynamic instabilities, optimization of the generated power (or the descent time in deorbiting missions), and minimization of the tether mass. The electrodynamic forces on an electrodynamic tether are responsible for variations in the mechanical energy of the tethered system and can also drive the system to dynamic instability. Energy sources and sinks in this system include the following: 1) ionospheric impedance, 2) the potential drop at the cathodic contactor, 3) ohmic losses in the tether, 4) the corotational plasma electric field, and 5) generated power and/or 6) input power. The analysis of each of these energy components, or bricks, establishes parameters that are useful tools for tether design. In this study, the nondimensional parameters that govern the orbital energy variation, dynamic instability, and power generation were characterized, and their mutual interdependence was established. A space-debris mitigation mission was taken as an example of this approach for the assessment of tether performance. Numerical simulations using a dumbbell model for tether dynamics, the International Geomagnetic Reference Field for the geomagnetic field, and the International Reference Ionosphere for the ionosphere were performed to test the analytical approach. The results obtained herein stress the close relationships that exist among the velocity of descent, dynamic stability, and generated power. An optimal tether design requires a detailed tradeoff among these performances in a real-world scenario.
Resumo:
The increase of orbital debris and the consequent proliferation of smaller objects through fragmentation are driving the need for mitigation strategies. The issue is how to deorbit the satellite with an efficient system that does not impair drastically the propellant budget of the satellite and, consequently, reduces its operating life. We have been investigating, in the framework of a European-Community-funded project, a passive system that makes use of an electrodynamics tether to deorbit a satellite through Lorentz forces. The deorbiting system will be carried by the satellite itself at launch and deployed from the satellite at the end of its life. From that moment onward the system operates passively without requiring any intervention from the satellite itself. The paper summarizes the results of the analysis carried out to show the deorbiting performance of the system starting from different orbital altitudes and inclinations for a reference satellite mass. Results can be easily scaled to other satellite masses. The results have been obtained by using a high-fidelity computer model that uses the latest environmental routines for magnetic field, ionospheric density, atmospheric density and a gravity field model. The tether dynamics is modelled by considering all the main aspects of a real system as the tether flexibility and its temperature-dependent electrical conductivity. Temperature variations are computed by including all the major external and internal input fluxes and the thermal flux emitted from the tether. The results shows that a relatively compact and light system can carry out the complete deorbit of a relatively large satellite in a time ranging from a month to less than a year starting from high LEO with the best performance occurring at low orbital inclinations.
Resumo:
The European energy sector is undergoing a major transformation and is facing a series of difficult challenges. These include a high and increasing dependence on external energy resources; dramatically reduce the need for the emissions of greenhouse gases to meet environmental objectives and the difficulties related to the promotion of energy market effectively integrated and competitive. Some of the policies associated with the various objectives are sometimes in conflict with each other, while in other cases are mutually reinforcing.The aim of this paper is to do a scienti?c analysis of the developments so far and the expectations for the coming period focusing on the pillars of energy policy in the EU in terms of security of supply, environment, climate change and promoting a competitive and integrated market. The use of renewable energy sources is seen as a key element of European energy policy and should help to: reduce dependence on fuel from non-member countries; reduce emissions from carbon-based energy sources, and; decouple energy costs from oil prices.
Resumo:
The current space environment, consisting of manmade debris and micrometeoroids, poses a risk to safe operations in space, and the situation is continuously deteriorating due to in-orbit debris collisions and to new satellite launches. Bare electrodynamic tethers can provide an efficient mechanism for rapid deorbiting of satellites from low Earth orbit at end of life. Because of its particular geometry (length very much larger than cross-sectional dimensions), a tether may have a relatively high risk of being severed by the single impact of small debris. The rates of fatal impact of orbital debris on round and tape tethers of equal length and mass, evaluated with an analytical approximation to debris flux modeled by NASA’s ORDEM2000, shows much higher survival probability for tapes. A comparative numerical analysis using debris flux model ORDEM2000 and ESA’s MASTER2005 validates the analytical result and shows that, for a given time in orbit, a tape has a probability of survival of about one and a half orders of magnitude higher than a round tether of equal mass and length. Because deorbiting from a given altitude is much faster for the tape due to its larger perimeter, its probability of survival in a practical sense is quite high.