994 resultados para OXIDE EMISSIONS
Resumo:
High optical power density of 0.5 mW/cm2, external quantum efficiency of 0.1%, and population inversion of 7% are reported from Tb+-implanted silicon-rich silicon nitride/oxide light emitting devices. Electrical and electroluminescence mechanisms in these devices were investigated. The excitation cross section for the 543 nm Tb3+ emission was estimated under electrical pumping, resulting in a value of 8.2 × 10−14 cm2, which is one order of magnitude larger than one reported for Tb3+:SiO2 light emitting devices. These results demonstrate the potentiality of Tb+-implanted silicon nitride material for the development of integrated light sources compatible with Si technology.
Resumo:
A novel NO2 sensor based on (CdO)x(ZnO)1-x mixed-oxide thin films deposited by the spray pyrolysis technique is developed. The sensor response to 3-ppm NO2 is studied in the range 50°C-350°C for three different film compositions. The device is also tested for other harmful gases, such as CO (300 ppm) and CH4 (3000 ppm). The sensor response to these reducing gases is different at different temperatures varying from the response typical for the p-type semiconductor to that typical for the n-type semiconductor. Satisfactory response to NO2 and dynamic behavior at 230°C, as well as low resistivity, are observed for the mixed-oxide film with 30% Cd. The response to interfering gas is poor at working temperature (230°C). On the basis of this study, a possible sensing mechanism is proposed.
The effects of electron-hole separation on the photoconductivity of individual metal oxide nanowires
Resumo:
The responses of individual ZnO nanowires to UV light demonstrate that the persistent photoconductivity (PPC) state is directly related to the electron¿hole separation near the surface. Our results demonstrate that the electrical transport in these nanomaterials is influenced by the surface in two different ways. On the one hand, the effective mobility and the density of free carriers are determined by recombination mechanisms assisted by the oxidizing molecules in air. This phenomenon can also be blocked by surface passivation. On the other hand, the surface built-in potential separates the photogenerated electron¿hole pairs and accumulates holes at the surface. After illumination, the charge separation makes the electron¿hole recombination difficult and originates PPC. This effect is quickly reverted after increasing either the probing current (self-heating by Joule dissipation) or the oxygen content in air (favouring the surface recombination mechanisms). The model for PPC in individual nanowires presented here illustrates the intrinsic potential of metal oxide nanowires to develop optoelectronic devices or optochemical sensors with better and new performances.
Resumo:
A configurational model for silicon oxide damaged after a high-dose ion implantation of a nonreactive species is presented. Based on statistics of silicon-centered tetrahedra, the model takes into account not only the closest environment of a given silicon atom, but also the second neighborhood, so it is specified whether the oxygen attached to one given silicon is bridging two tetrahedra or not. The frequencies and intensities of infrared vibrational bands have been calculated by averaging over the distributions and these results are in agreement with the ones obtained from infrared experimental spectra. Likewise, the chemical shifts obtained from x-ray photoelectron spectroscopy (XPS) analysis are similar to the reported values for the charge-transfer model of SiOx compounds.
Resumo:
Low-cost tin oxide gas sensors are inherently nonspecific. In addition, they have several undesirable characteristics such as slow response, nonlinearities, and long-term drifts. This paper shows that the combination of a gas-sensor array together with self-organizing maps (SOM's) permit success in gas classification problems. The system is able to determine the gas present in an atmosphere with error rates lower than 3%. Correction of the sensor's drift with an adaptive SOM has also been investigated
Resumo:
Organic residue application into soil alter the emission of gases to atmosphere and CO2, CH4, N2O may contribute to increase the greenhouse effect. This experiment was carried out in a restoration area on a dystrophic Ultisol (PVAd) to quantify greenhouse gas (GHG) emissions from soil under castor bean cultivation, treated with sewage sludge (SS) or mineral fertilizer. The following treatments were tested: control without N; FertMin = mineral fertilizer; SS5 = 5 t ha-1 SS (37.5 kg ha-1 N); SS10 = 10 t ha-1 SS (75 kg ha-1 N); and SS20 = 20 t ha-1 SS (150 kg ha-1 N). The amount of sludge was based on the recommended rate of N for castor bean (75 kg ha-1), the N level of SS and the mineralization fraction of N from SS. Soil gas emission was measured for 21 days. Sewage sludge and mineral fertilizers altered the CO2, CH4 and N2O fluxes. Soil moisture had no effect on GHG emissions and the gas fluxes was statistically equivalent after the application of FertMin and of 5 t ha-1 SS. The application of the entire crop N requirement in the form of SS practically doubled the Global Warming Potential (GWP) and the C equivalent emissions in comparison with FertMin treatments.
Resumo:
[spa] En lo que concierne al cambio climático, los pronósticos de cercanos picos de combustible fósiles parecen buenas noticias pues la mayoría de las emisiones proceden de la quema de combustibles fósiles. Sin embargo, esto podría resultar engañoso de confirmarse las enormes estimaciones de reservas de carbón pues puede divisarse un intercambio de combustible fósiles con baja concentración de carbono (petróleo y gas) por otros de mayor (carbón). Ciñéndonos a esta hipótesis desarrollamos escenarios donde tan pronto el petróleo y el gas natural alcanzan su cénit la extracción de carbón crece lo necesario para compensar el descenso de los primeros. Estimamos las emisiones que se deriva de tales supuestos y las comparamos con el peor escenario del IPCC. Si bien dicho escenario parece improbable concluimos que los picos de petróleo y gas no son suficientes para evitar peligrosas sendas de gases de efecto invernadero. Las concentraciones de CO2 halladas superan con creces las 450 ppm sin signos de remisión.
Resumo:
Microcirculation (2010) 17, 69-78. doi: 10.1111/j.1549-8719.2010.00002.x Abstract Background: This study was designed to explore the effect of transient inducible nitric oxide synthase (iNOS) overexpression via cationic liposome-mediated gene transfer on cardiac function, fibrosis, and microvascular perfusion in a porcine model of chronic ischemia. Methods and Results: Chronic myocardial ischemia was induced using a minimally invasive model in 23 landrace pigs. Upon demonstration of heart failure, 10 animals were treated with liposome-mediated iNOS-gene-transfer by local intramyocardial injection and 13 animals received a sham procedure to serve as control. The efficacy of this iNOS-gene-transfer was demonstrated for up to 7 days by reverse transcriptase-polymerase chain reaction in preliminary studies. Four weeks after iNOS transfer, magnetic resonance imaging showed no effect of iNOS overexpression on cardiac contractility at rest and during dobutamine stress (resting ejection fraction: control 27%, iNOS 26%; P = ns). Late enhancement, infarct size, and the amount of fibrosis were similar between groups. Although perfusion and perfusion reserve in response to adenosine and dobutamine were not significantly modified by iNOS-transfer, both vessel number and diameter were significantly increased in the ischemic area in the iNOS-treated group versus control (point score: control 15.3, iNOS 34.7; P < 0.05). Conclusions: Our findings demonstrate that transient iNOS overexpression does not aggravate cardiac dysfunction or postischemic fibrosis, while potentially contributing to neovascularization in the chronically ischemic heart.
Resumo:
Invasive studies suggest that healthy children living at high altitude display pulmonary hypertension, but the data to support this assumption are sparse. Nitric oxide (NO) synthesized by the respiratory epithelium regulates pulmonary artery pressure, and its synthesis was reported to be increased in Aymara high-altitude dwellers. We hypothesized that pulmonary artery pressure will be lower in Aymara children than in children of European ancestry at high altitude, and that this will be related to increased respiratory NO. We therefore compared pulmonary artery pressure and exhaled NO (a marker of respiratory epithelial NO synthesis) between large groups of healthy children of Aymara (n = 200; mean +/- SD age, 9.5 +/- 3.6 years) and European ancestry (n = 77) living at high altitude (3,600 to 4,000 m). We also studied a group of European children (n = 29) living at low altitude. The systolic right ventricular to right atrial pressure gradient in the Aymara children was normal, even though significantly higher than the gradient measured in European children at low altitude (22.5 +/- 6.1 mm Hg vs 17.7 +/- 3.1 mm Hg, p < 0.001). In children of European ancestry studied at high altitude, the pressure gradient was 33% higher than in the Aymara children (30.0 +/- 5.3 mm Hg vs 22.5 +/- 6.1 mm Hg, p < 0.0001). In contrast to what was expected, exhaled NO tended to be lower in Aymara children than in European children living at the same altitude (12.4 +/- 8.8 parts per billion [ppb] vs 16.1 +/- 11.1 ppb, p = 0.06) and was not related to pulmonary artery pressure in either group. Aymara children are protected from hypoxic pulmonary hypertension at high altitude. This protection does not appear to be related to increased respiratory NO synthesis.
Resumo:
Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM). The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C) mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification), mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a) conventional tillage (CT) and (b) no tillage (NT) in combination with three cropping systems: (a) R0- monoculture system (soybean/wheat), (b) R1- winter crop rotation (soybean/wheat/soybean/black oat), and (c) R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat). The soil C-CO2 efflux was measured every 14 days for two years (48 measurements), by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between tillage systems were noticed for C-CO2 evolution. Soil C-CO2 effluxes followed a bi-modal pattern, with peaks in October/November and February/March. The highest emission was recorded in the summer and the lowest in the winter. The C-CO2 effluxes were weakly correlated to air temperature and not correlated to soil moisture. Based on the soil C conservation indexes investigated, NT associated to intensive crop rotation was more C conserving than CT with monoculture.
Resumo:
Nanoparticles (NPs) are in clinical use or under development for therapeutic imaging and drug delivery. However, relatively little information exists concerning the uptake and transport of NPs across human colon cell layers, or their potential to invade three-dimensional models of human colon cells that better mimic the tissue structures of normal and tumoral colon. In order to gain such information, the interactions of biocompatible ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) (iron oxide core 9-10 nm) coated with either cationic polyvinylamine (aminoPVA) or anionic oleic acid with human HT-29 and Caco-2 colon cells was determined. The uptake of the cationic USPIO NPs was much higher than the uptake of the anionic USPIO NPs. The intracellular localization of aminoPVA USPIO NPs was confirmed in HT-29 cells by transmission electron microscopy that detected the iron oxide core. AminoPVA USPIO NPs invaded three-dimensional spheroids of both HT-29 and Caco-2 cells, whereas oleic acid-coated USPIO NPs could only invade Caco-2 spheroids. Neither cationic aminoPVA USPIO NPs nor anionic oleic acid-coated USPIO NPs were transported at detectable levels across the tight CacoReady? intestinal barrier model or the more permeable mucus-secreting CacoGoblet? model.
Resumo:
INTRODUCTION: Intrauterine growth restriction (IUGR) affects ∼8% of all pregnancies and is associated with major perinatal mortality and morbidity, and with an increased risk to develop cardiovascular diseases in adulthood. Despite identification of several risk factors, the mechanisms implicated in the development of IUGR remain poorly understood. In case of placental insufficiency, reduced delivery of oxygen and/or nutrients to the fetus could be associated with alterations in the umbilical circulation, contributing further to the impairment of maternal-fetal exchanges. We compared the structural and functional properties of umbilical cords from growth-restricted and appropriate for gestational age (AGA) term newborns, with particular attention to the umbilical vein (UV). METHODS: Human umbilical cords were collected at delivery. Morphological changes were investigated by histomorphometry, and UV's reactivity by pharmacological studies. RESULTS: Growth-restricted newborns displayed significantly lower growth parameters, placental weight and umbilical cord diameter than AGA controls. Total cross-section and smooth muscle areas were significantly smaller in UV of growth-restricted neonates than in controls. Maximal vasoconstriction achieved in isolated UV was lower in growth-restricted boys than in controls, whereas nitric oxide-induced relaxation was significantly reduced in UV of growth-restricted girls compared to controls. CONCLUSION: IUGR is associated with structural alterations of the UV in both genders, and with a decreased nitric oxide-induced relaxation in UV of newborn girls, whereas boys display impaired vasoconstriction. Further investigations will allow to better understand the regulation of umbilical circulation in growth-restricted neonates, which could contribute to devise potential novel therapeutic strategies to prevent or limit the development of IUGR.
Resumo:
The soil CO2 emission has high spatial variability because it depends strongly on soil properties. The purpose of this study was to (i) characterize the spatial variability of soil respiration and related properties, (ii) evaluate the accuracy of results of the ordinary kriging method and sequential Gaussian simulation, and (iii) evaluate the uncertainty in predicting the spatial variability of soil CO2 emission and other properties using sequential Gaussian simulations. The study was conducted in a sugarcane area, using a regular sampling grid with 141 points, where soil CO2 emission, soil temperature, air-filled pore space, soil organic matter and soil bulk density were evaluated. All variables showed spatial dependence structure. The soil CO2 emission was positively correlated with organic matter (r = 0.25, p < 0.05) and air-filled pore space (r = 0.27, p < 0.01) and negatively with soil bulk density (r = -0.41, p < 0.01). However, when the estimated spatial values were considered, the air-filled pore space was the variable mainly responsible for the spatial characteristics of soil respiration, with a correlation of 0.26 (p < 0.01). For all variables, individual simulations represented the cumulative distribution functions and variograms better than ordinary kriging and E-type estimates. The greatest uncertainties in predicting soil CO2 emission were associated with areas with the highest estimated values, which produced estimates from 0.18 to 1.85 t CO2 ha-1, according to the different scenarios considered. The knowledge of the uncertainties generated by the different scenarios can be used in inventories of greenhouse gases, to provide conservative estimates of the potential emission of these gases.