1000 resultados para Nuclear reactions
Resumo:
The nuclear hormone receptor superfamily is characterized by an impressive functional diversity of its members despite a remarkable overall structural unity. A variety of ligands bind specifically to them and these receptors control gene networks that have profound effects on growth, development, and homeostasis. The ligand-receptor complexes recognize transcriptional enhancer DNA sequences, the hormone response elements, resulting in induction or repression of gene activity. The similarity between all these hormone response enhancer elements, as well as between the receptors themselves, indicates a conserved general strategy for the hormonal control of transcription by steroids. The activated receptors bind to responsive promoters and most likely mediate the assembly of stage- and tissue-specific transcription factor complexes that stimulate or inhibit gene expression.
Resumo:
We have developed and tested a new way of typing Trypanosoma cruzi, mamely the use of cloned nuclear DNA fragments as genetic markers. Restriction fragment length polymorphisms were verified on Soutern blots hybridized to random probes. Fragment patterns were analyzed and dendrograms constructed. Our results on well characterized laboratory strains correlate well to published isoenzyme studies. Some of the probes were also hybridized to chromosomes separated by pulse field gel electrophoresis a higher degree of heterogeneity was observed at this level.
Resumo:
This study examines how patients' relationship patterns are reenacted with the therapist during the first sessions of psychotherapy. Forty (N = 40) outpatients treated with a Brief Psychodynamic Intervention were included in the study. Their narratives of relationship episodes with significant others (e.g., mother, father, romantic partner, colleagues) were compared with relationship episodes with their therapist using the Core Conflictual Relationship Theme method. The Core Conflictual Relationship Theme focuses on 3 aspects of patients' relationship narratives: what the patient wants from others or from self; how others react to his/her wish; and how the patient consequently reacts. Results showed that 60% of patients display similar relationship patterns with their therapist and with significant others. The patterns that were reenacted with the therapist were not the most pervasive ones but were similar to those found in relationship episodes involving parents or romantic partners. These findings provide some support for the clinical concept of repetition of internalized relational patterns with the therapist very early in psychotherapy. Clinical implications are discussed.
Resumo:
Numerous professional or leisure activities expose individuals to plants susceptible to provoke contact allergies. The immunological mechanisms that are responsible for these ailments (delayed cellular reaction linked to allergic dermatitis or immediate IgE mediated reaction of the allergic urticaria) differ according to the plant families involved. A differential diagnosis must be made in the case of the even more frequent non-allergic reactions implying either a simple mechanical irritation, or a contact with toxic substances. The role of UV (phytophotodermatosis), as well as the contact allergy to wood is also evoked in this paper.
Resumo:
BACKGROUND: The Nuclear Factor I (NFI) family of DNA binding proteins (also called CCAAT box transcription factors or CTF) is involved in both DNA replication and gene expression regulation. Using chromatin immuno-precipitation and high throughput sequencing (ChIP-Seq), we performed a genome-wide mapping of NFI DNA binding sites in primary mouse embryonic fibroblasts. RESULTS: We found that in vivo and in vitro NFI DNA binding specificities are indistinguishable, as in vivo ChIP-Seq NFI binding sites matched predictions based on previously established position weight matrix models of its in vitro binding specificity. Combining ChIP-Seq with mRNA profiling data, we found that NFI preferentially associates with highly expressed genes that it up-regulates, while binding sites were under-represented at expressed but unregulated genes. Genomic binding also correlated with markers of transcribed genes such as histone modifications H3K4me3 and H3K36me3, even outside of annotated transcribed loci, implying NFI in the control of the deposition of these modifications. Positional correlation between + and - strand ChIP-Seq tags revealed that, in contrast to other transcription factors, NFI associates with a nucleosomal length of cleavage-resistant DNA, suggesting an interaction with positioned nucleosomes. In addition, NFI binding prominently occurred at boundaries displaying discontinuities in histone modifications specific of expressed and silent chromatin, such as loci submitted to parental allele-specific imprinted expression. CONCLUSIONS: Our data thus suggest that NFI nucleosomal interaction may contribute to the partitioning of distinct chromatin domains and to epigenetic gene expression regulation.NFI ChIP-Seq and input control DNA data were deposited at Gene Expression Omnibus (GEO) repository under accession number GSE15844. Gene expression microarray data for mouse embryonic fibroblasts are on GEO accession number GSE15871.
Resumo:
The crocidurine shrews include the most speciose genus of mammals, Crocidura. The origin and evolution of their radiation is, however, poorly understood because of very scant fossil records and a rather conservative external morphology between species. Here, we use an alignment of 3560 base pairs of mitochondrial and nuclear DNA to generate a phylogenetic hypothesis for the evolution of Old World shrews of the subfamily Crocidurinae. These molecular data confirm the monophyly of the speciose African and Eurasian Crocidura, which also includes the fossorial, monotypic genus Diplomesodon. The phylogenetic reconstructions give further credit to a paraphyletic position of Suncus shrews, which are placed into at least two independent clades (one in Africa and sister to Sylvisorex and one in Eurasia), at the base of the Crocidura radiation. Therefore, we recommend restricting the genus Suncus to the Palaearctic and Oriental taxa, and to consider all the African Suncus as Sylvisorex. Using molecular dating and biogeographic reconstruction analyses, we suggest a Palaearctic-Oriental origin for Crocidura dating back to the Upper Miocene (6.8 million years ago) and several subsequent colonisations of the Afrotropical region by independent lineages of Crocidura.
Resumo:
We demonstrate that the step of DNA strand exchange during RecA-mediated recombination reaction can occur equally efficiently in the presence or absence of ATP hydrolysis. The polarity of strand exchange is the same when instead of ATP its non-hydrolyzable analog adenosine-5'-O-(3-thiotriphosphate) is used. We show that the ATP dependence of recombination reaction is limited to the post-exchange stages of the reactions. The low DNA affinity state of RecA protomers, induced after ATP hydrolysis, is necessary for the dissociation of RecA-DNA complexes at the end of the reaction. This dissociation of RecA from DNA is necessary for the release of recombinant DNA molecules from the complexes formed with RecA and for the recycling of RecA protomers for another round of the recombination reaction.
Resumo:
SUMMARY : Eukaryotic DNA interacts with the nuclear proteins using non-covalent ionic interactions. Proteins can recognize specific nucleotide sequences based on the sterical interactions with the DNA and these specific protein-DNA interactions are the basis for many nuclear processes, e.g. gene transcription, chromosomal replication, and recombination. New technology termed ChIP-Seq has been recently developed for the analysis of protein-DNA interactions on a whole genome scale and it is based on immunoprecipitation of chromatin and high-throughput DNA sequencing procedure. ChIP-Seq is a novel technique with a great potential to replace older techniques for mapping of protein-DNA interactions. In this thesis, we bring some new insights into the ChIP-Seq data analysis. First, we point out to some common and so far unknown artifacts of the method. Sequence tag distribution in the genome does not follow uniform distribution and we have found extreme hot-spots of tag accumulation over specific loci in the human and mouse genomes. These artifactual sequence tags accumulations will create false peaks in every ChIP-Seq dataset and we propose different filtering methods to reduce the number of false positives. Next, we propose random sampling as a powerful analytical tool in the ChIP-Seq data analysis that could be used to infer biological knowledge from the massive ChIP-Seq datasets. We created unbiased random sampling algorithm and we used this methodology to reveal some of the important biological properties of Nuclear Factor I DNA binding proteins. Finally, by analyzing the ChIP-Seq data in detail, we revealed that Nuclear Factor I transcription factors mainly act as activators of transcription, and that they are associated with specific chromatin modifications that are markers of open chromatin. We speculate that NFI factors only interact with the DNA wrapped around the nucleosome. We also found multiple loci that indicate possible chromatin barrier activity of NFI proteins, which could suggest the use of NFI binding sequences as chromatin insulators in biotechnology applications. RESUME : L'ADN des eucaryotes interagit avec les protéines nucléaires par des interactions noncovalentes ioniques. Les protéines peuvent reconnaître les séquences nucléotidiques spécifiques basées sur l'interaction stérique avec l'ADN, et des interactions spécifiques contrôlent de nombreux processus nucléaire, p.ex. transcription du gène, la réplication chromosomique, et la recombinaison. Une nouvelle technologie appelée ChIP-Seq a été récemment développée pour l'analyse des interactions protéine-ADN à l'échelle du génome entier et cette approche est basée sur l'immuno-précipitation de la chromatine et sur la procédure de séquençage de l'ADN à haut débit. La nouvelle approche ChIP-Seq a donc un fort potentiel pour remplacer les anciennes techniques de cartographie des interactions protéine-ADN. Dans cette thèse, nous apportons de nouvelles perspectives dans l'analyse des données ChIP-Seq. Tout d'abord, nous avons identifié des artefacts très communs associés à cette méthode qui étaient jusqu'à présent insoupçonnés. La distribution des séquences dans le génome ne suit pas une distribution uniforme et nous avons constaté des positions extrêmes d'accumulation de séquence à des régions spécifiques, des génomes humains et de la souris. Ces accumulations des séquences artéfactuelles créera de faux pics dans toutes les données ChIP-Seq, et nous proposons différentes méthodes de filtrage pour réduire le nombre de faux positifs. Ensuite, nous proposons un nouvel échantillonnage aléatoire comme un outil puissant d'analyse des données ChIP-Seq, ce qui pourraient augmenter l'acquisition de connaissances biologiques à partir des données ChIP-Seq. Nous avons créé un algorithme d'échantillonnage aléatoire et nous avons utilisé cette méthode pour révéler certaines des propriétés biologiques importantes de protéines liant à l'ADN nommés Facteur Nucléaire I (NFI). Enfin, en analysant en détail les données de ChIP-Seq pour la famille de facteurs de transcription nommés Facteur Nucléaire I, nous avons révélé que ces protéines agissent principalement comme des activateurs de transcription, et qu'elles sont associées à des modifications de la chromatine spécifiques qui sont des marqueurs de la chromatine ouverte. Nous pensons que lés facteurs NFI interagir uniquement avec l'ADN enroulé autour du nucléosome. Nous avons également constaté plusieurs régions génomiques qui indiquent une éventuelle activité de barrière chromatinienne des protéines NFI, ce qui pourrait suggérer l'utilisation de séquences de liaison NFI comme séquences isolatrices dans des applications de la biotechnologie.
Resumo:
Milky spots (MS), considered by the authors as a Coelomatic Lympho-myelopoietic Organ (CLMO), present a strong reactivity during experimental schistosomal mansoni infection, characterized by an increase of lymphocytes, macrophages, plasmocytes, mast cells, neutrophils and expression of eosinophil metaplasia. Intraperitoneal injection of purified Schistosoma mansoni (Sm) eggs provoked a rise in the number and size of MS, which developed the sessile marginal and pedunculated types. The authors conclude that egg antigens are, at least partially, responsible for MS reactivity during Sm infection.
Resumo:
Insulin-dependent diabetes mellitus is an autoimmune disease in which pancreatic islet beta cells are destroyed by a combination of immunological and inflammatory mechanisms. In particular, cytokine-induced production of nitric oxide has been shown to correlate with beta cell apoptosis and/or inhibition of insulin secretion. In the present study, we investigated whether the interleukin (IL)-1beta intracellular signal transduction pathway could be blocked by overexpression of dominant negative forms of the IL-1 receptor interacting protein MyD88. We show that overexpression of the Toll domain or the lpr mutant of MyD88 in betaTc-Tet cells decreased nuclear factor kappaB (NF-kappaB) activation upon IL-1beta and IL-1beta/interferon (IFN)-gamma stimulation. Inducible nitric oxide synthase mRNA accumulation and nitrite production, which required the simultaneous presence of IL-1beta and IFN-gamma, were also suppressed by approximately 70%, and these cells were more resistant to cytokine-induced apoptosis as compared with parental cells. The decrease in glucose-stimulated insulin secretion induced by IL-1beta and IFN-gamma was however not prevented. This was because these dysfunctions were induced by IFN-gamma alone, which decreased cellular insulin content and stimulated insulin exocytosis. These results demonstrate that IL-1beta is involved in inducible nitric oxide synthase gene expression and induction of apoptosis in mouse beta cells but does not contribute to impaired glucose-stimulated insulin secretion. Furthermore, our data show that IL-1beta cellular actions can be blocked by expression of MyD88 dominant negative proteins and, finally, that cytokine-induced beta cell secretory dysfunctions are due to the action of IFN-gamma.
Resumo:
The 1990s witnessed the launching of two ambitious trade regionalization plans, the Nafta and EU enlargement to Central and Eastern Europe. In contrast to previous projects for the creation or expansion of regional trade blocs, these two projects concerned states at dramatically different levels of economic development: The Nafta involved the very wealthy economies of Canada and the USA and the significantly poorer economy of Mexico, whereas EU enlargement involved the very wealthy economy of the 15 member-state European Union and the significantly poorer economies of former Communist states in Central and Eastern Europe. Ultimately, the Nafta and EU enlargement are responses to the challenges of globalization. Paradoxically, however, they have been met with radically different societal reactions in the wealthy partners that participated in the launching of these processes. This paper focuses on the reaction by labor unions on both sides of the Atlantic. I conclude that while labor relations and welfare institutions constrained the trade policy choices made by labor unions in the United States and Europe, they do not tell the whole story. It would seem that United States labor unions were more sensitive to the potential risks for workers associated to the liberalization of trade than were their European counterparts.
Resumo:
La línia principal d’investigació del nostre grup de recerca es basa en la síntesi i estudi de nous agents de solvatació quirals (CSAs), és a dir, compostos enantiopurs que s’utilitzen per a determinar la puresa enantiomèrica mitjançant la Ressonància Magnètica Nuclear (RMN). Al present treball volem sintetitzar i estudiar estructuralment la dicetona racèmica 14 amb la qual, mitjançant reaccions de reducció, podem obtenir el diol 12, el nou CSA que volem sintetitzar. També forma part del present treball la resolució de la dicetona racèmica 14, és a dir, aconseguir la separació dels seus dos enantiòmers mitjançant la formació de derivats diastereoisomèrics de 14 amb un reactiu enantiopur.
Resumo:
The action of various DNA topoisomerases frequently results in characteristic changes in DNA topology. Important information for understanding mechanistic details of action of these topoisomerases can be provided by investigating the knot types resulting from topoisomerase action on circular DNA forming a particular knot type. Depending on the topological bias of a given topoisomerase reaction, one observes different subsets of knotted products. To establish the character of topological bias, one needs to be aware of all possible topological outcomes of intersegmental passages occurring within a given knot type. However, it is not trivial to systematically enumerate topological outcomes of strand passage from a given knot type. We present here a 3D visualization software (TopoICE-X in KnotPlot) that incorporates topological analysis methods in order to visualize, for example, knots that can be obtained from a given knot by one intersegmental passage. The software has several other options for the topological analysis of mechanisms of action of various topoisomerases.
Resumo:
CD44 is a facultative cell surface proteoglycan that serves as the principal cell surface receptor for hyaluronan (HA). Studies have shown that in addition to participating in numerous signaling pathways, CD44 becomes internalized upon engagement by ligand and that a portion of its intracellular domain can translocate to the nucleus where it is believed to play a functional role in cell proliferation and survival. However, the mechanisms whereby fragments of CD44 enter the nucleus have not been elucidated. Here we show that CD44 interacts with two import receptors of the importin β superfamily, importin β itself and transportin. Inhibition of importin β-dependent transport failed to block CD44 accumulation in the nucleus. By contrast, inhibition of the transportin-dependent pathway abrogated CD44 import. Mutagenesis of the intracellular domain of CD44 revealed that the 20 membrane-proximal residues contain sequences required for transportin-mediated nuclear transport. Our observations provide evidence that CD44 interacts with importin family members and identify the transportin-dependent pathway as the mechanism whereby full-length CD44 enters the nucleus.