940 resultados para Neutron scattering and diffraction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A triblock poly(lactic acid)-b-poly(ethylene glycol)-b-poly(lactic acid) (PLA-PEG-PLA)/paclitaxel (PTX) conjugate was synthesized by the reaction of carboxyl-terminated copolymer PLA-PEG-PLA with PTX in the presence of dicyclohexylcarbodiimide and dimethylaminopyridine. Carboxyl-terminated copolymer PLA-PEG-PLA was prepared by the reaction of the hydroxyl end groups in copolymer PLA-PEG-PLA with succinic anhydride. Its structure was confirmed by NMR and gel permeation chromatography. The PLA-PEG-PLA/PTX conjugates could self-assemble into micelles in aqueous solutions with a low critical micelle concentration. Dynamic light scattering and environmental scanning electron microscopy analyses of the PLA-PEG-PLA/PTX micelles revealed their spherical structure and size of 220 nm. The antitumor activity of the conjugate against woman Hela cancer cells, evaluated by the 3-(4,5-dimethylthiazol2-yl)-2,5-diphenyl tetrazolium bromide method, showed that the conjugates had an antitumor activity similar to that of pure PTX. The obtained PLA-PEG-PLA/PTX conjugates are expected to be used in clinical practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone)-based segmented polyurethanes (PCLUs) were prepared from poly(epsilon-caprolactone) diol, diisocyanates (DI), and 1,4-butanediol. The DIs used were 4,4'-diphenylmethane diisocyanate (MDI), 2,4-toluenediisocyanate (TDI), iso-phorone diisocyanate (IPDI), and hexamethylene diisocyanate (HDI). Differential scanning calorimetry, small-angle X-ray scattering, and dynamic mechanical analysis were employed to characterize the two-phase structures of all PCLUs. It was found that HDI- and MDI-based PCLUs had higher degree of microphase separation than did IPDI- and TDI-based PCLUs, which was primarily due to the crystallization of HDI- and MDI-based hard-segments. As a result, the HDI-based PCLU exhibited the highest recovery force up to 6 MPa and slowest stress relaxation with increasing temperature. Besides, it was found that the partial damage in hard-segment domains during the sample deformation was responsible for the incomplete shape-recovery of PCLUs after the first deformation, but the damage did not develop during the subsequent deformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cloud-point temperatures (T-cl's) of trans-decahydronaphthalene(TD)/polystyrene (PS, (M) over bar (w) = 270 000) solutions were determined by light scattering measurements over a range of temperatures (1-16degreesC), pressures (100-900 bar), and compositions (4.2-21.6 vol.-% polymer). The system phase separates upon cooling and T-cl was found to increase with rising pressure for constant composition. In the absence of special effects, this finding indicates positive excess volume for the mixing. Special attention was paid to the demixing temperatures as a function of pressure for different polymer solutions and the plots in the T-phi plane (where phi signifies volume fractions). The cloud-point curves of polymer solutions under different pressures were observed for different compositions, which demonstrated that pressure has a greater effect on the TD/PS solutions when far from the critical point as opposed to near the critical point. The Sanchez-Lacombe lattice fluid theory (SLLFT) was used to calculate the spinodals, the binodals, the Flory-Huggins (FH) interaction parameter, the enthalpy of mixing, and the volume changes of mixing. The calculated results show that modified PS scaling parameters can describe the thermodynamics of the TD/PS system well. Moreover the SLLFT describes the experimental results well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cloud-point temperatures (T-cl's) of both binary poly(ethylene oxide) (PEO)-poly(ethylene oxide-b-dimethylsiloxane) [P(EO-b-DMS)] and ternary[toluene/PEO/P(EO-b-DMS)] systems were determined by light scattering measurements at atmospheric pressure. The phase separation behavior upon cooling in the ternary system has been investigated at atmospheric pressure and under high pressure and compared to the phase behavior in the binary system. The phase transition temperatures have been obtained for all of the samples. As a result, the pressure induces compatibility in the binary mixtures, but for the ternary system, pressure not only can induce mixing but also can induce phase separation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A perfect single crystal of nylon-2,14 was prepared from 0.02% (w/v) 1,4-butanediol solution by a "self-seeding" technique and isothermal crystallization at 120 and 145 degreesC. The morphology and structure features were examined by transmission electron microscopy with both image and diffraction modes, atomic force microscopy, and wide-angle X-ray diffraction (WAXD). The nylon-2,14 single crystal grown from 1,4-butanediol at 145 degreesC inhabited a lathlike shape with a lamellar thickness of about 9 nm. Electron diffraction and WAXD data indicated that nylon-2,14 crystallized in a triclinic system with lattice dimensions a = 0.49 nm, b = 0.51 nm, c = 2.23 nm, alpha = 60.4degrees, beta = 77degrees, and gamma = 59degrees. The crystal structure is different from that of nylon-6,6 but similar to that of other members of nylon-2Y.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three scaling parameters described in Sanchez-Lacombe lattice fluid theory (SLLFT), T*, P* and rho* of pure polystyrene (PS), pure poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and their mixtures are obtained by fitting corresponding experimental pressure volume-temperature data with equation-of-state of SLLFT. A modified combining rule in SLLFT used to match the volume per mer, v* of the PS/PPO mixtures was advanced and the enthalpy of mixing and Flory-Huggins (FH) interaction parameter were calculated using the new rule. It is found that the difference between the new rule and the old one presented by Sanchez and Lacombe is quite small in the calculation of the enthalpy of mixing and FH interaction parameter and the effect of volume-combining rule on the calculation of thermodynamic properties is much smaller than that of energy-combining rule. But the relative value of interaction parameter changes much due to the new volume-based combining rule. This effect can affect the position of phase diagram very much, which is reported elsewhere [Macromolecules 34 (2001) 6291]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and miscibility of polyimide PBPI-E/PTI-E blends were studied by wide- and small-angle X-ray scattering and dynamic mechanical analysis, where PBPI-E is a biphenyl-dianhydride-based polyimide, and PTI-E is a polyimide from 4,4'-thiodiphthalic anhydride and 4,4'-oxydianiline. The results obtained show that there exists a paracrystalline structure in the blends with high content of PBPI-E, but this does not affect the miscibility of the blends. The blends are miscible over the entire composition range, since only one T(g) was observed for each blend. Meanwhile, the segregation of PTI-E during crystallization of PBPI-E in the blends is interlamellar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aqueous solutions of amphiphilic polymers usually comprise of inter- and intramolecular associations of hydrophobic groups often leading to a formation of a rheologically significant reversible network at low concentrations that can be identified using techniques such as static light scattering and rheometry. However, in most studies published till date comparing water soluble polymers with their respective amphiphilic derivatives, it has been very difficult to distinguish between the effects of molecular mass versus hydrophobic associations on hydrodynamic (intrinsic viscosity [g]) and thermodynamic parameters (second virial coefficient A2), owing to the differences between their degrees of polymerization. This study focuses on the dilute and semi-dilute solutions of hydroxyethyl cellulose (HEC) and its amphiphilic derivatives (hmHEC) of the same molecular mass, along with other samples having a different molecular mass using capillary viscometry, rheometry and static light scattering. The weight average molecular masses (MW) and their distributions for the nonassociative HEC were determined using size exclusion chromatography. Various empirical approaches developed by past authors to determine [g] from dilute solution viscometry data have been discussed. hmHEC with a sufficiently high degree of hydrophobic modification was found to be forming a rheologically significant network in dilute solutions at very low concentrations as opposed to the hmHEC with a much lower degree of hydrophobic modification which also enveloped the hydrophobic groups inside the supramolecular cluster as shown by their [g] and A2. The ratio A2MW/[g], which takes into account hydrodynamic as well as thermodynamic parameters, was observed to be less for associative polymers compared to that of the non-associative polymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acousto-optic (AO) sensing and imaging (AOI) is a dual-wave modality that combines ultrasound with diffusive light to measure and/or image the optical properties of optically diffusive media, including biological tissues such as breast and brain. The light passing through a focused ultrasound beam undergoes a phase modulation at the ultrasound frequency that is detected using an adaptive interferometer scheme employing a GaAs photorefractive crystal (PRC). The PRC-based AO system operating at 1064 nm is described, along with the underlying theory, validating experiments, characterization, and optimization of this sensing and imaging apparatus. The spatial resolution of AO sensing, which is determined by spatial dimensions of the ultrasound beam or pulse, can be sub-millimeter for megahertz-frequency sound waves.A modified approach for quantifying the optical properties of diffuse media with AO sensing employs the ratio of AO signals generated at two different ultrasound focal pressures. The resulting “pressure contrast signal” (PCS), once calibrated for a particular set of pressure pulses, yields a direct measure of the spatially averaged optical transport attenuation coefficient within the interaction volume between light and sound. This is a significant improvement over current AO sensing methods since it produces a quantitative measure of the optical properties of optically diffuse media without a priori knowledge of the background illumination. It can also be used to generate images based on spatial variations in both optical scattering and absorption. Finally, the AO sensing system is modified to monitor the irreversible optical changes associated with the tissue heating from high intensity focused ultrasound (HIFU) therapy, providing a powerful method for noninvasively sensing the onset and growth of thermal lesions in soft tissues. A single HIFU transducer is used to simultaneously generate tissue damage and pump the AO interaction. Experimental results performed in excised chicken breast demonstrate that AO sensing can identify the onset and growth of lesion formation in real time and, when used as feedback to guide exposure parameters, results in more predictable lesion formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation describes a model for acoustic propagation in inhomogeneous flu- ids, and explores the focusing by arrays onto targets under various conditions. The work explores the use of arrays, in particular the time reversal array, for underwater and biomedical applications. Aspects of propagation and phasing which can lead to reduced focusing effectiveness are described. An acoustic wave equation was derived for the propagation of finite-amplitude waves in lossy time-varying inhomogeneous fluid media. The equation was solved numerically in both Cartesian and cylindrical geometries using the finite-difference time-domain (FDTD) method. It was found that time reversal arrays are sensitive to several debilitating factors. Focusing ability was determined to be adequate in the presence of temporal jitter in the time reversed signal only up to about one-sixth of a period. Thermoviscous absorption also had a debilitating effect on focal pressure for both linear and nonlinear propagation. It was also found that nonlinearity leads to degradation of focal pressure through amplification of the received signal at the array, and enhanced absorption in the shocked waveforms. This dissertation also examined the heating effects of focused ultrasound in a tissue-like medium. The application considered is therapeutic heating for hyperther- mia. The acoustic model and a thermal model for tissue were coupled to solve for transient and steady temperature profiles in tissue-like media. The Pennes bioheat equation was solved using the FDTD method to calculate the temperature fields in tissue-like media from focused acoustic sources. It was found that the temperature-dependence of the medium's background prop- erties can play an important role in the temperature predictions. Finite-amplitude effects contributed excess heat when source conditions were provided for nonlinear ef- fects to manifest themselves. The effect of medium heterogeneity was also found to be important in redistributing the acoustic and temperature fields, creating regions with hotter and colder temperatures than the mean by local scattering and lensing action. These temperature excursions from the mean were found to increase monotonically with increasing contrast in the medium's properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations of the vibrational spectra of cyclo(Gly-Gly), cyclo(L-Ala-L-Ala) and cyclo(t-Ala-Gly) are reported. Raman scattering and Fourier transform infrared (FTIR) spectra of solid-state and aqueous protonated samples, as well as their corresponding N-deuterated isotopomers, have been examined. In addition, density functional theory (DFT) (B3-LYP/cc-pVDZ) calculations of molecular structures and their associated vibrational modes were carried out. In each case, the calculated structures of lowest energy for the isolated gas-phase molecules have boat conformations. Assignments have been made for the observed Raman and FTIR vibrational bands of the cyclic di-amino acid peptides (CDAPs) examined. Raman polarization studies of aqueous phase samples are consistent with C-2 and C-1 symmetries for the six-membered rings of cyclo(L-Ala-L-Ala) and cydo(L-Ala-Gly), respectively. There is a good correlation between experimental and calculated vibrational bands for the three CDAPs. These data are in keeping with boat conformations for cydo(L-Ala-L-Ala) and cyclo(L-Ala-Gly) molecules, predicted by the ab initio calculations, in both the solid and aqueous solution states. However, Raman spectroscopic results might infer that cyclo(L-AlaGly) deviates only slightly from planarity in the solid state. The potential energy distributions of the amide I and II modes of a cis-peptide linkage are shown to be significantly different from those of the trans-peptides. For example, deuterium shifts have shown that the cis-amide I vibrations found in cyclo(Gly-Gly), cyclo(L-Ala-L-Ala), and cyclo(L-Ala-Gly) have larger N-H contributions compared to their trans-amide counterparts. Compared to trans-amide II vibrations, cis-amide II vibrations show a considerable decrease in N-H character.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

B3-LYP/cc-pVDZ calculations of the gas-phase structure and vibrational spectra of the isolated molecule cyclo(L-Ser-L-Ser), a cyclic di-amino acid peptide (CDAP), were carried out by assuming C-2 symmetry. It is predicted that the minimum-energy structure is a boat conformation for the diketopiperazine (DKP) ring with both L-Beryl side chains being folded slightly above the ring. An additional structure of higher energy (15.16 kJ mol(-1)) has been calculated for a DKP ring with a planar geometry, although in this case two fundamental vibrations have been calculated with imaginary wavenumbers. The reported X-ray crystallographic structure of cyclo(L-Ser-L-Ser), shows that the DKP ring displays a near-planar conformation, with both the two L-Beryl side chains being folded above the ring. It is hypothesized that the crystal packing forces constrain the DKP ring in a planar conformation and it is probable that the lower energy boat conformation may prevail in the aqueous environment. Raman scattering and Fourier-transform infrared (FT-IR) spectra of solid state and aqueous solution samples of cyclo(L-Ser-L-Ser) are reported and discussed. Vibrational band assignments have been made on the basis of comparisons with the calculated vibrational spectra and band wavenumber shifts upon deuteration of labile protons. The experimental Raman and IR results for solid-state samples show characteristic amide I vibrations which are split (Raman:1661 and 1687 cm(-1), IR:1666 and 1680 cm(-1)), possibly due to interactions between molecules in a crystallographic unit cell. The cis amide I band is differentiated by its deuterium shift of ~ 30 cm(-1), which is larger than that previously reported for trans amide I deuterium shifts. A cis amide II mode has been assigned to a Raman band located at 1520 cm(-1). The occurrence of this cis amide II mode at a wavenumber above 1500 cm(-1) concurs with results of previously examined CDAP molecules with low molecular weight substituents on the C-alpha atoms, and is also indicative of a relatively unstrained DKP ring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclo(L-Glu-L-Glu) has been crystallised in two different polymorphic forms. Both polymorphs are monoclinic, but form 1 is in space group P21 and form 2 is in space group C2. Raman scattering and FT-IR spectroscopic studies have been conducted for the N,O-protonated and deuterated derivatives. Raman spectra of orientated single crystals, solid-state and aqueous solution samples have also been recorded. The different hydrogen-bonding patterns for the two polymorphs have the greatest effect on vibrational modes with N&bond;H and C&dbond;O stretching character. DFT (B3-LYP/cc-pVDZ) calculations of the isolated cyclo(L-Glu-L-Glu) molecule predict that the minimum energy structure, assuming C2 symmetry, has a boat conformation for the diketopiperazine ring with the two L-Glu side chains being folded above the ring. The calculated geometry is in good agreement with the X-ray crystallographic structures for both polymorphs. Normal coordinate analysis has facilitated the band assignments for the experimental vibrational spectra. Copyright © 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ab initio molecular dynamics simulations have been performed for the first time on the room-temperature organic ionic liquid dimethyl imidazolium chloride [DMIM][Cl] using density functional theory. The aim is to compare the local liquid structure with both that obtained from two different classical force fields and from neutron scattering experiments. The local structure around the cation shows significant differences compared to both the classical calculations and the neutron results. In particular, and unlike in the gas-phase ion pair, chloride ions tend to be located near a ring C-H proton in a position suggesting hydrogen bonding. The results are used to suggest ways in which the classical potentials may be improved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contribution of electron-phonon scattering and grain boundary scattering to the mid-IR (lambda = 3.392 mum) properties of An has been assessed by examining both bulk, single crystal samples-Au(1 1 1) and Au(1 1 0)-and thin film, polycrystalline An samples at 300 K and 100 K by means of surface plasmon polariton excitation. The investigation constitutes a stringent test for the in-vacuo Otto-configuration prism coupler used to perform the measurements, illustrating its strengths and limitations. Analysis of the optical response is guided by a physically based interpretation of the Drude model. Relative to the reference case of single crystal Au at 100 K (epsilon = - 568 + i17.5), raising the temperature to 300 K causes increased electron-phonon scattering that accounts for a reduction of similar to40 nm in the electron mean free path. Comparison of a polycrystalline sample to the reference case determines a mean free path due to grain boundary scattering of similar to 17 nm, corresponding to about half the mean grain size as determined from atomic force microscopy and indicating a high reflectance coefficient for the An grain boundaries. An analysis combining consideration of grain boundary scattering and the inclusion of a small percentage of voids in the polycrystalline film by means of an effective medium model indicates a value for the grain boundary reflection coefficient in the range 0.55-0.71. (C) 2005 Elsevier B.V. All rights reserved.