993 resultados para Naturforschende Gesellschaft in Danzig
Resumo:
The relationship between the Orthodox Churches and the World Council of Churches (WCC) became a crisis just before the 8th Assembly of the WCC in Harare, Zimbabwe in 1998. The Special Commission on Orthodox Participation in the WCC (SC), inaugurated in Harare, worked during the period 1999 2002 to solve the crisis and to secure the Orthodox participation in the WCC. The purpose of this study is: 1) to clarify the theological motives for the inauguration of the SC and the theological argumentation of the Orthodox criticism; 2) to write a reliable history and analysis of the SC; 3) to outline the theological argumentation, which structures the debate, and 4) to investigate the ecclesiological questions that arise from the SC material. The study spans the years 1998 to 2006, from the WCC Harare Assembly to the Porto Alegre Assembly. Hence, the initiation and immediate reception of the Special Commission are included in the study. The sources of this study are all the material produced by and for the SC. The method employed is systematic analysis. The focus of the study is on theological argumentation; the historical context and political motives that played a part in the Orthodox-WCC relations are not discussed in detail. The study shows how the initial, specific and individual Orthodox concerns developed into a profound ecclesiological discussion and also led to concrete changes in WCC practices, the best known of which is the change to decision-making by consensus. The Final Report of the SC contains five main themes, namely, ecclesiology, decision-making, worship/common prayer, membership and representation, and social and ethical issues. The main achievement of the SC was that it secured the Orthodox membership in the WCC. The ecclesiological conclusions made in the Final Report are twofold. On the one hand, it confirms that the very act of belonging to the WCC means the commitment to discuss the relationship between a church and churches. The SC recommended that baptism should be added as a criterion for membership in the WCC, and the member churches should continue to work towards the mutual recognition of each other s baptism. These elements strengthen the ecclesiological character of the WCC. On the other hand, when the Final Report discusses common prayer, the ecclesiological conclusions are much more cautious, and the ecclesiological neutrality of the WCC is emphasized several times. The SC repeatedly emphasized that the WCC is a fellowship of churches. The concept of koinonia, which has otherwise been important in recent ecclesiological questions, was not much applied by the SC. The comparison of the results of the SC to parallel ecclesiological documents of the WCC (Nature and Mission of the Church, Called to Be the One Church) shows that they all acknowledge the different ecclesiological starting points of the member churches, and, following that, a variety of legitimate views on the relation of the Church to the churches. Despite the change from preserving the koinonia to promises of eschatological koinonia, all the documents affirm that the goal of the ecumenical movement is still full, visible unity.
Resumo:
The temperature dependence of 1H spin-lattice relaxation time, T1, and that of the second moment, M2, are analysed in the temperature range 390 K to 77 K. A plot of T1 vs inverse temperature shows three phase transitions at 250 K, 167 K and 111 K. At 167 K, T1 displays a large jump while it shows changes in slope at 250 K and 111 K. In the high temperature phase (> 167 K), the correlated motion of CH3 and NH3 groups is found to cause the relaxation while their uncorrelated motion takes over in the low temperature phases (< 167 K). The unusual T1 behaviour in phase II (250 K-167 K) is ascribed to the small angle torsion of the cation. A constant M2 value of ∼ 9.7 G2, throughout the range of temperature studied, indicates the presence of reorientation of CH3 and NH3 groups.
Resumo:
Spatial information at the landscape scale is extremely important for conservation planning, especially in the case of long-ranging vertebrates. The biodiversity-rich Anamalai hill ranges in the Western Ghats of southern India hold a viable population for the long-term conservation of the Asian elephant. Through rapid but extensive field surveys we mapped elephant habitat, corridors, vegetation and land-use patterns, estimated the elephant population density and structure, and assessed elephant-human conflict across this landscape. GIS and remote sensing analyses indicate that elephants are distributed among three blocks over a total area of about 4600 km(2). Approximately 92% remains contiguous because of four corridors; however, under 4000 km2 of this area may be effectively used by elephants. Nine landscape elements were identified, including five natural vegetation types, of which tropical moist deciduous forest is dominant. Population density assessed through the dung count method using line transects covering 275 km of walk across the effective elephant habitat of the landscape yielded a mean density of 1.1 (95% Cl = 0.99-1.2) elephant/km(2). Population structure from direct sighting of elephants showed that adult male elephants constitute just 2.9% and adult females 42.3% of the population with the rest being subadults (27.4%), juveniles (16%) and calves (11.4%). Sex ratios show an increasing skew toward females from juvenile (1:1.8) to sub-adult (1:2.4) and adult (1:14.7) indicating higher mortality of sub-adult and adult males that is most likely due to historical poaching for ivory. A rapid questionnaire survey and secondary data on elephant-human conflict from forest department records reveals that villages in and around the forest divisions on the eastern side of landscape experience higher levels of elephant-human conflict than those on the western side; this seems to relate to a greater degree of habitat fragmentation and percentage farmers cultivating annual crops in the east. We provide several recommendations that could help maintain population viability and reduce elephant-human conflict of the Anamalai elephant landscape. (C) 2013 Deutsche Gesellschaft far Saugetierkunde. Published by Elsevier GmbH. All rights reserved.
Resumo:
Two atmospheric inversions (one fine-resolved and one process-discriminating) and a process-based model for land surface exchanges are brought together to analyse the variations of methane emissions from 1990 to 2009. A focus is put on the role of natural wetlands and on the years 2000-2006, a period of stable atmospheric concentrations. From 1990 to 2000, the top-down and bottom-up visions agree on the time-phasing of global total and wetland emission anomalies. The process-discriminating inversion indicates that wetlands dominate the time-variability of methane emissions (90% of the total variability). The contribution of tropical wetlands to the anomalies is found to be large, especially during the post-Pinatubo years (global negative anomalies with minima between -41 and -19 Tg yr(-1) in 1992) and during the alternate 1997-1998 El-Nino/1998-1999 La-Nina (maximal anomalies in tropical regions between +16 and +22 Tg yr(-1) for the inversions and anomalies due to tropical wetlands between +12 and +17 Tg yr(-1) for the process-based model). Between 2000 and 2006, during the stagnation of methane concentrations in the atmosphere, the top-down and bottom-up approaches agree on the fact that South America is the main region contributing to anomalies in natural wetland emissions, but they disagree on the sign and magnitude of the flux trend in the Amazon basin. A negative trend (-3.9 +/- 1.3 Tg yr(-1)) is inferred by the process-discriminating inversion whereas a positive trend (+1.3 +/- 0.3 Tg yr(-1)) is found by the process model. Although processed-based models have their own caveats and may not take into account all processes, the positive trend found by the B-U approach is considered more likely because it is a robust feature of the process-based model, consistent with analysed precipitations and the satellite-derived extent of inundated areas. On the contrary, the surface-data based inversions lack constraints for South America. This result suggests the need for a re-interpretation of the large increase found in anthropogenic methane inventories after 2000.
Resumo:
Ice volume estimates are crucial for assessing water reserves stored in glaciers. Due to its large glacier coverage, such estimates are of particular interest for the Himalayan-Karakoram (HK) region. In this study, different existing methodologies are used to estimate the ice reserves: three area-volume relations, one slope-dependent volume estimation method, and two ice-thickness distribution models are applied to a recent, detailed, and complete glacier inventory of the HK region, spanning over the period 2000-2010 and revealing an ice coverage of 40 775 km(2). An uncertainty and sensitivity assessment is performed to investigate the influence of the observed glacier area and important model parameters on the resulting total ice volume. Results of the two ice-thickness distribution models are validated with local ice-thickness measurements at six glaciers. The resulting ice volumes for the entire HK region range from 2955 to 4737 km(3), depending on the approach. This range is lower than most previous estimates. Results from the ice thickness distribution models and the slope-dependent thickness estimations agree well with measured local ice thicknesses. However, total volume estimates from area-related relations are larger than those from other approaches. The study provides evidence on the significant effect of the selected method on results and underlines the importance of a careful and critical evaluation.
Resumo:
This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March-May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inland sites. In general, the model underestimates the observed BC mass concentrations. However, the model-observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average +/- standard deviation (representing spatial and temporal variability) BC mass concentration (1341 +/- 2353 ng m(-3)) in South Asia. BC emissions from residential (61 %) and industrial (23 %) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.
Resumo:
The combination of remotely sensed gappy Sea surface temperature (SST) images with the missing data filling DINEOF (data interpolating empirical orthogonal functions) technique, followed by a principal component analysis of the reconstructed data, has been used to identify the time evolution and the daily scale variability of the wintertime surface signal of the Iberian Poleward Current (IPC), or Navidad, during the 1981-2010 period. An exhaustive comparison with the existing bibliography, and the vertical temperature and salinity profiles related to its extremes over the Bay of Biscay area, show that the obtained time series accurately reflect the IPC-Navidad variability. Once a time series for the evolution of the SST signal of the current over the last decades is well established, this time series is used to propose a physical mechanism in relation to the variability of the IPC-Navidad, involving both atmospheric and oceanic variables. According to the proposed mechanism, an atmospheric circulation anomaly observed in both the 500 hPa and the surface levels generates atmospheric surface level pressure, wind-stress and heat-flux anomalies. In turn, those surface level atmospheric anomalies induce mutually coherent SST and sea level anomalies over the North Atlantic area, and locally, in the Bay of Biscay area. These anomalies, both locally over the Bay of Biscay area and over the North Atlantic, are in agreement with several mechanisms that have separately been related to the variability of the IPC-Navidad, i.e. the south-westerly winds, the joint effect of baroclinicity and relief (JEBAR) effect, the topographic beta effect and a weakened North Atlantic gyre.
Resumo:
Two high-frequency (HF) radar stations were installed on the coast of the south-eastern Bay of Biscay in 2009, providing high spatial and temporal resolution and large spatial coverage of currents in the area for the first time. This has made it possible to quantitatively assess the air-sea interaction patterns and timescales for the period 2009-2010. The analysis was conducted using the Barnett-Preisendorfer approach to canonical correlation analysis (CCA) of reanalysis surface winds and HF radar-derived surface currents. The CCA yields two canonical patterns: the first wind-current interaction pattern corresponds to the classical Ekman drift at the sea surface, whilst the second describes an anticyclonic/cyclonic surface circulation. The results obtained demonstrate that local winds play an important role in driving the upper water circulation. The wind-current interaction timescales are mainly related to diurnal breezes and synoptic variability. In particular, the breezes force diurnal currents in waters of the continental shelf and slope of the south-eastern Bay. It is concluded that the breezes may force diurnal currents over considerably wider areas than that covered by the HF radar, considering that the northern and southern continental shelves of the Bay exhibit stronger diurnal than annual wind amplitudes.
Resumo:
19 p.
Resumo:
In this paper, reanalysis fields from the ECMWF have been statistically downscaled to predict from large-scale atmospheric fields, surface moisture flux and daily precipitation at two observatories (Zaragoza and Tortosa, Ebro Valley, Spain) during the 1961-2001 period. Three types of downscaling models have been built: (i) analogues, (ii) analogues followed by random forests and (iii) analogues followed by multiple linear regression. The inputs consist of data (predictor fields) taken from the ERA-40 reanalysis. The predicted fields are precipitation and surface moisture flux as measured at the two observatories. With the aim to reduce the dimensionality of the problem, the ERA-40 fields have been decomposed using empirical orthogonal functions. Available daily data has been divided into two parts: a training period used to find a group of about 300 analogues to build the downscaling model (1961-1996) and a test period (19972001), where models' performance has been assessed using independent data. In the case of surface moisture flux, the models based on analogues followed by random forests do not clearly outperform those built on analogues plus multiple linear regression, while simple averages calculated from the nearest analogues found in the training period, yielded only slightly worse results. In the case of precipitation, the three types of model performed equally. These results suggest that most of the models' downscaling capabilities can be attributed to the analogues-calculation stage.
Resumo:
21 p.
Resumo:
19 p.
Resumo:
15 p.