984 resultados para National Science Council (U.S.)
Resumo:
"COSATI."
Resumo:
Mode of access: Internet.
Resumo:
Mimeographed.
Resumo:
Mode of access: Internet.
Resumo:
"No. 99."
Resumo:
Issued June 1979.
Resumo:
Reprint. Originally published: 1942.
Resumo:
"Prepared by the Genetics and Teratology Section of the Clinical Nutrition and Early Development Branch for presentation to the National Advisory Child Health and Human Development Council, May 1980"--P. 2 of cover.
Resumo:
Cover title.
Resumo:
Includes bibliographies.
Resumo:
Acknowledgements. This work was mainly funded by the EU FP7 CARBONES project (contracts FP7-SPACE-2009-1-242316), with also a small contribution from GEOCARBON project (ENV.2011.4.1.1-1-283080). This work used eddy covariance data acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program; DE-FG02-04ER63917 and DE-FG02-04ER63911), AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada (supported by CFCAS, NSERC, BIOCAP, Environment Canada, and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia, USCCC. We acknowledge the financial support to the eddy covariance data harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Université Laval and Environment Canada and US Department of Energy and the database development and technical support from Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California-Berkeley, University of Virginia. Philippe Ciais acknowledges support from the European Research Council through Synergy grant ERC-2013-SyG-610028 “IMBALANCE-P”. The authors wish to thank M. Jung for providing access to the GPP MTE data, which were downloaded from the GEOCARBON data portal (https://www.bgc-jena.mpg.de/geodb/projects/Data.php). The authors are also grateful to computing support and resources provided at LSCE and to the overall ORCHIDEE project that coordinate the development of the code (http://labex.ipsl.fr/orchidee/index.php/about-the-team).
Resumo:
The Pico de Navas landslide was a large-magnitude rotational movement, affecting 50x106m3 of hard to soft rocks. The objectives of this study were: (1) to characterize the landslide in terms of geology, geomorphological features and geotechnical parameters; and (2) to obtain an adequate geomechanical model to comprehensively explain its rupture, considering topographic, hydro-geological and geomechanical conditions. The rupture surface crossed, from top to bottom: (a) more than 200 m of limestone and clay units of the Upper Cretaceous, affected by faults; and (b) the Albian unit of Utrillas facies composed of silty sand with clay (Kaolinite) of the Lower Cretaceous. This sand played an important role in the basal failure of the slide due to the influence of fine particles (silt and clay), which comprised on average more than 70% of the sand, and the high content presence of kaolinite (>40%) in some beds. Its geotechnical parameters are: unit weight (δ) = 19-23 KN/m3; friction angle (φ) = 13º-38º and cohesion (c) = 10-48 KN/m2. Its microstructure consists of accumulations of kaolinite crystals stuck to terrigenous grains, making clayey peds. We hypothesize that the presence of these aggregates was the internal cause of fluidification of this layer once wet. Besides the faulted structure of the massif, other conditioning factors of the movement were: the large load of the upper limestone layers; high water table levels; high water pore pressure; and the loss of strength due to wet conditions. The 3D simulation of the stability conditions concurs with our hypothesis. The landslide occurred in the Recent or Middle Holocene, certainly before at least 500 BC and possibly during a wet climate period. Today, it appears to be inactive. This study helps to understand the frequent slope instabilities all along the Iberian Range when facies Utrillas is present.
Resumo:
Indigenous Arctic and Subarctic communities currently are facing a myriad of social and environmental changes. In response to these changes, studies concerning indigenous knowledge (IK) and climate change vulnerability, resiliency, and adaptation have increased dramatically in recent years. Risks to lives and livelihoods are often the focus of adaptation research; however, the cultural dimensions of climate change are equally important because cultural dimensions inform perceptions of risk. Furthermore, many Arctic and Subarctic IK climate change studies document observations of change and knowledge of the elders and older generations in a community, but few include the perspectives of the younger population. These observations by elders and older generations form a historical baseline record of weather and climate observations in these regions. However, many indigenous Arctic and Subarctic communities are composed of primarily younger residents. We focused on the differences in the cultural dimensions of climate change found between young adults and elders. We outlined the findings from interviews conducted in four indigenous communities in Subarctic Alaska. The findings revealed that (1) intergenerational observations of change were common among interview participants in all four communities, (2) older generations observed more overall change than younger generations interviewed by us, and (3) how change was perceived varied between generations. We defined “observations” as the specific examples of environmental and weather change that were described, whereas “perceptions” referred to the manner in which these observations of change were understood and contextualized by the interview participants. Understanding the differences in generational observations and perceptions of change are key issues in the development of climate change adaptation strategies.
Resumo:
La monografía pretende explicar el rol desempeñado por Exxon Mobil y Chevron en la formulación de la Gran Estrategia del gobierno Bush hacia Irak. Especialmente, se sostiene que las dos compañías multinacionales mencionadas lograron que la intervención militar en Irak, fuera pensada como un objetivo fundamental de la política energética del gobierno Bush. Para lograr este objetivo, Chevron y Exxon aprovecharon principalmente su posición en la economía nacional estadounidense. De hecho, lograron celebrar contratos a largo plazo para la extracción del crudo y de gas en Irak. Fundamentándose en un análisis documental, estas compañías son analizadas como grupos de presión empresarial y grupos económicos, cuyos beneficios derivados de la invasión en Irak pueden encontrarse incluso durante el gobierno Obama.
Resumo:
The News of the Week article that reports on Senator Kay Bailey Hutchison (R-TX) questioning the need to fund social science research at the National Science Foundation is alarming and shortsighted ("Senate panel chair asks why NSF funds social sciences," 12 May, p. 829). Social science research is at the fundamental core of basic research and has much to contribute to the economic viability of the United States. Twenty years of direct and jointly funded social and ecosystem science research at Colorado State University's Natural Resource Ecology Laboratory has produced deep insights into environmental and societal impacts of political upheaval, land use, and climate change in parts of Africa, Asia, and the Americas. Beyond greatly advancing our understanding of the coupled human-environmental system, the partnership of social and ecosystem science has brought scientists and decision-makers together to begin to develop solutions to difficult problems.