960 resultados para NG2 proteoglycan, oligodendrocyte progenitor cell, migration, Syntenin


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ARHGAP21 is a 217 kDa RhoGAP protein shown to modulate cell migration through the control of Cdc42 and FAK activities. In the present work a 250 kDa-ARHGAP21 was identified by mass spectrometry. This modified form is differentially expressed among cell lines and human primary cells. Co-immunoprecipitations and in vitro SUMOylation confirmed ARHGAP21 specific modification by SUMO2/3 and mapped the SUMOylation site to ARHGAP21 lysine K1443. Immunofluorescence staining revealed that ARHGAP21 co-localizes with SUMO2/3 in the cytoplasm and membrane compartments. Interestingly, our results suggest that ARHGAP21 SUMOylation may be related to cell proliferation. Therefore, SUMOylation of ARHGAP21 may represent a way of guiding its function. (C) 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The diaphragm is the major respiratory muscle affected by Duchenne muscular dystrophy (DMD) and is responsible for causing 80% of deaths. The use of mechanical forces that act on the body or intermittent pressure on the airways improves the quality of life of patients but does not prevent the progression of respiratory failure. Thus, diseases that require tissue repair, such as DMD, represent a group of pathologies that have great potential for cell therapy. The application of stem cells directly into the diaphragm instead of systemic application can reduce cell migration to other affected areas and increase the chances of muscle reorganisation. The mdx mouse is a suitable animal model for this research because its diaphragmatic phenotype is similar to human DMD. Therefore, the aim of this study was to assess the potential cell implantation in the diaphragm muscle after the xenotransplantation of stem cells. Methods: A total of 9 mice, including 3 control BALB/Cmice, 3 5-month-old mdx mice without stem cell injections and 3 mdx mice injected with stem cells, were used. The animals injected with stem cells underwent laparoscopy so that stem cells from GFP-labelled rabbit olfactory epithelium could be locally injected into the diaphragm muscle. After 8 days, all animals were euthanised, and the diaphragm muscle was dissected and subjected to histological and immunohistochemical analyses. Results: Both the fresh diaphragm tissue and immunohistochemical analyses showed immunopositive GFP labelling of some of the cells and immunonegativity of myoblast bundles. In the histological analysis, we observed a reduction in the inflammatory infiltrate as well as the presence of a few peripheral nuclei and myoblast bundles. Conclusion: We were able to implant stem cells into the diaphragm via local injection, which promoted moderate muscle reorganisation. The presence of myoblast bundles cannot be attributed to stem cell incorporation because there was no immunopositive labelling in this structure. It is believed that the formation of the bundles may have been stimulated by cellular signalling mechanisms that have not yet been elucidated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The e-Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth (e-HEALING) registry was designed to capture clinical data on the use of the endothelial progenitor cell capture stent (ECS) in routine clinical practice. In this analysis, we investigated the 12-month clinical outcomes in patients treated with an ECS for a bifurcation lesion. Methods The worldwide, prospective, nonrandomized e-HEALING registry aimed to enrol 5000 patients treated for coronary artery disease with one or more ECS between October 2005 and October 2007. Clinical follow-up was obtained at 1, 6, and 12 months. The primary endpoint was target vessel failure (TVF), defined as the composite of cardiac death, myocardial infarction, and target vessel revascularization at 12 months. Results A total of 573 patients were treated for at least one bifurcation lesion and were assessed in the current analysis. Baseline characteristics showed a median age of 65 years; 21% were diabetic patients and 36% had unstable angina. A total of 63% of the bifurcation lesions were located in the left artery descending and the mean stent length was 20.7 +/- 12.6 mm. At 12 months, TVF was 12.7% and target lesion revascularization was 7.5%. Definite or probable stent thrombosis occurred in 1.7% of the patients. Moreover, one or more stents per lesion [hazard ratio (HR): 2.79, 95% confidence interval (CI): 1.60-4.86, P < 0.001], predilatation (HR: 0.39, 95% CI: 0.17-0.87, P = 0.023), and lesions located in the right coronary artery (HR: 4.56, 95% CI: 1.07-19.5, P = 0.041) were independent predictors of TVF. Conclusion In the e-HEALING registry, coronary bifurcation stenting with the ECS results in favorable clinical outcomes and low incidences of repeat revascularization and stent thrombosis. Coron Artery Dis 23:201-207 (C) 2012 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: We investigated the relation between duration of dual antiplatelet therapy (DAPT) and clinical outcomes up to 12 months after Genous (TM) endothelial progenitor cell capturing R stent (TM) placement in patients from the e-HEALING registry. Background: Cessation of (DAPT) has been shown to be associated with the occurrence of stent thrombosis (ST). After Genous placement, 1 month of DAPT is recommended. Methods: Patients were analyzed according to continuation or discontinuation of DAPT at a 30-day and 6-month landmark, excluding patients with events before the landmark. Each landmark was a new baseline, and outcomes were followed up to 12 months after stenting. The main outcome for our current analysis was target vessel failure (TVF), defined as target vessel-related cardiac death or myocardial infarction and target vessel revascularization. Secondary outcomes included ST. (Un)adjusted hazard ratios (HR) for TVF were calculated with Cox regression. Results: No difference was observed in the incidence of TVF [HR: 1.03; 95% confidence intervals (CI): 0.651.65, P = 0.89] in patients continuing DAPT (n = 4,249) at 30 days versus patients stopped (n = 309), and HR: 0.82 (95% CI: 0.551.23, P = 0.34) in patients continuing DAPT (n = 2,654) at 6 months versus patients stopped [n = 1,408] DAPT). Furthermore, no differences were observed in ST. Even after addition of identified independent predictors for TVF, adjusted TVF hazards were comparable. Conclusions: In a post-hoc analysis of e-HEALING, duration of DAPT was not associated with the occurrence of the outcomes TVF or ST. The Genous stent may be an attractive treatment especially in patients at increased risk for (temporary) cessation of DAPT or bleeding. (C) 2011 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alveolar macrophages (AMs) are important cells in the resolution of the inflammatory process and they come into direct contact with inhaled pollutants. Hydroquinone (HQ) is an environmental pollutant and a component of cigarette smoke that causes immunosuppressive effects. In the present work, we showed that mice exposed to low levels of aerosolized HQ (25 ppm; 1 h/day/5 days) presented impaired mononuclear cell migration to the lipopolysaccharide (LPS)-inflamed lung. This may have been due to reduced monocyte chemoattractant protein-1 (MCP-1) secretion into bronchoalveolar lavage fluid (BALF), and it was not related to alterations to mononuclear cell mobilization into the blood or adhesion molecules expression on mononuclear cell membranes. Corroborating the actions of HQ on MCP-1 secretion, reduced MCP-1 concentrations were also found in the supernatant of ex vivo AM and tracheal tissue collected from HQ-exposed mice. A direct action of HQ on MCP-1 secretion, resulting from impaired gene synthesis, was verified by in vitro incubation of naive AMs or tracheal tissue with HQ. The role of reduced levels of MCP-1 in the BALF on monocyte migration was analysed in the human monocytic lineage THP-1 in in vitro chemotaxis assays, which showed that the reduced concentrations of MCP-1 found in the BALF or cell supernatants from HQ-exposed mice impaired cell migration. Considering the fact that MCP-1 presents a broad spectrum of actions on pathophysiological conditions and that resident mononuclear cells are involved in lung tissue homeostasis and in immune host defence, the mechanism of HQ toxicity presented herein might be relevant to the genesis of infectious lung diseases in smokers and in inhabitants of polluted areas. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amblyomin-X is a Kunitz-type serine protease inhibitor (Kunitz-type SPI) designed from the cDNA library of the Amblyomma cajennense tick, which displays in vivo anti-tumor activities. Here, the mechanisms of actions of Amblyomin-X in vascular endothelial growth factor A (VEGF-A)-induced angiogenesis were characterized. Topical application of Amblyomin-X (10 or 100 ng/10 mu l; each 48 h) inhibited VEGF-A-induced (10 ng/10 mu l; each 48 h) angiogenesis in the dorsal subcutaneous tissue in male Swiss mice. Moreover, similar effect was observed in the VEGF-A-induced angiogenesis in the chicken chorioallantoic membrane (CAM). Additional in vitro assays in t-End cells showed that Amblyomin-X treatment delayed the cell cycle, by maintaining them in G0/G1 phase, and inhibited cell proliferation and adhesion, tube formation and membrane expression of the adhesion molecule platelet-endothelial cell adhesion molecule-1 (PECAM-I), regardless of mRNA synthesis. Together, results herein reveal the role of Kunitz-type SPI on in vivo VEGF-A-induced angiogenesis, by exerting modulatory actions on endothelial cell proliferation and adhesion, especially on membrane expression of PECAM-1. These data provide further mechanisms of actions of Kunitz-type SPI, corroborating their relevance as scientific tools in the design of therapeutic molecules. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In many types of cancer, prostaglandin E-2 (PGE(2)) is associated with tumour related processes including proliferation, migration, angiogenesis and apoptosis. However in gliomas the role of this prostanoid is poorly understood. Here, we report on the proliferative, migratory, and apoptotic effects of PGE(1), PGE(2) and Ibuprofen (IBP) observed in the T98G human glioma cell line in vitro. Methods: T98G human glioma cells were treated with IBP, PGE(1) or PGE(2) at varying concentrations for 24-72 hours. Cell proliferation, mitotic index and apoptotic index were determined for each treatment. Caspase-9 and caspase-3 activity was measured using fluorescent probes in live cells (FITC-LEHD-FMK and FITC-DEVD-FMK respectively). The migratory capacity of the cells was quantified using a scratch migration assay and a transwell migration assay. Results: A significant decrease was seen in cell number (54%) in the presence of 50 mu M IBP. Mitotic index and bromodeoxyuridine (BrdU) incorporation were also decreased 57% and 65%, respectively, by IBP. The apoptotic index was increased (167%) and the in situ activity of caspase-9 and caspase-3 was evident in IBP treated cells. The inhibition of COX activity by IBP also caused a significant inhibition of cell migration in the monolayer scratch assay (74%) and the transwell migration assay (36%). In contrast, the presence of exogenous PGE(1) or PGE(2) caused significant increases in cell number (37% PGE(1) and 45% PGE(2)). When mitotic index was measured no change was found for either PG treatment. However, the BrdU incorporation rate was significantly increased by PGE(1) (62%) and to a greater extent by PGE(2) (100%). The apoptotic index was unchanged by exogenous PGs. The addition of exogenous PGs caused an increase in cell migration in the monolayer scratch assay (43% PGE(1) and 44% PGE(2)) and the transwell migration assay (28% PGE(1) and 68% PGE(2)). Conclusions: The present study demonstrated that treatments which alter PGE(1) and PGE(2) metabolism influence the proliferative and apoptotic indices of T98G glioma cells. The migratory capacity of the cells was also significantly affected by the change in prostaglandin metabolism. Modifying PG metabolism remains an interesting target for future studies in gliomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bladder cancer is a common malignancy worldwide. Despite the increased use of cisplatin-based combination therapy, the outcomes for patients with advanced disease remain poor. Recently, altered activation of the PI3K/Akt/mTOR pathway has been associated with reduced patient survival and advanced stage of bladder cancer, making its upstream or downstream components attractive targets for therapeutic intervention. In the present study, we showed that treatment with DTCM-glutaramide, a piperidine that targets PDK1, results in reduced proliferation, diminished cell migration and G1 arrest in 5637 and T24 bladder carcinoma cells. Conversely, no apoptosis, necrosis or autophagy were detected after treatment, suggesting that reduced cell numbers in vitro are a result of diminished proliferation rather than cell death. Furthermore previous exposure to 10 mu g/ml DTCM-glutarimide sensitized both cell lines to ionizing radiation. Although more studies are needed to corroborate our findings, our results indicate that PDK1 may be useful as a therapeutic target to prevent progression and abnormal tissue dissemination of urothelial carcinomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Chronic Chagas cardiomyopathy (CCC), a life-threatening inflammatory dilated cardiomyopathy, affects 30% of the approximately 8 million patients infected by Trypanosoma cruzi. Even though the Th1 T cell-rich myocarditis plays a pivotal role in CCC pathogenesis, little is known about the factors controlling inflammatory cell migration to CCC myocardium. Methods and Results: Using confocal immunofluorescence and quantitative PCR, we studied cell surface staining and gene expression of the CXCR3, CCR4, CCR5, CCR7, CCR8 receptors and their chemokine ligands in myocardial samples from end-stage CCC patients. CCR5+, CXCR3+, CCR4+, CCL5+ and CXCL9+ mononuclear cells were observed in CCC myocardium. mRNA expression of the chemokines CCL5, CXCL9, CXCL10, CCL17, CCL19 and their receptors was upregulated in CCC myocardium. CXCL9 mRNA expression directly correlated with the intensity of myocarditis, as well as with mRNA expression of CXCR3, CCR4, CCR5, CCR7, CCR8 and their ligands. We also analyzed single-nucleotide polymorphisms for genes encoding the most highly expressed chemokines and receptors in a cohort of Chagas disease patients. CCC patients with ventricular dysfunction displayed reduced genotypic frequencies of CXCL9 rs10336 CC, CXCL10 rs3921 GG, and increased CCR5 rs1799988CC as compared to those without dysfunction. Significantly, myocardial samples from CCC patients carrying the CXCL9/CXCL10 genotypes associated to a lower risk displayed a 2-6 fold reduction in mRNA expression of CXCL9, CXCL10, and other chemokines and receptors, along with reduced intensity of myocarditis, as compared to those with other CXCL9/CXCL10 genotypes. Conclusions: Results may indicate that genotypes associated to reduced risk in closely linked CXCL9 and CXCL10 genes may modulate local expression of the chemokines themselves, and simultaneously affect myocardial expression of other key chemokines as well as intensity of myocarditis. Taken together our results may suggest that CXCL9 and CXCL10 are master regulators of myocardial inflammatory cell migration, perhaps affecting clinical progression to the life-threatening form of CCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Repulsive guidance molecules (RGM) are high-affinity ligands for the Netrin receptor Neogenin, and they are crucial for nervous system development including neural tube closure; neuronal and neural crest cell differentiation and axon guidance. Recent studies implicated RGM molecules in bone morphogenetic protein signaling, which regulates a variety of developmental processes. Moreover, a role for RGMc in iron metabolism has been established. This suggests that RGM molecules may play important roles in non-neural tissues. Results: To explore which tissues and processed may be regulated by RGM molecules, we systematically investigated the expression of RGMa and RGMb, the only RGM molecules currently known for avians, in the chicken embryo. Conclusions: Our study suggests so far unknown roles of RGM molecules in notochord, somite and skeletal muscle development. Developmental Dynamics, 2012. (C) 2012 Wiley Periodicals, Inc.