986 resultados para NEUTRON SPIN STRUCTURE
Resumo:
We report a measurement of the longitudinal double-spin asymmetry A(LL) and the differential cross section for inclusive pi(0) production at midrapidity in polarized proton collisions at s=200 GeV. The cross section was measured over a transverse momentum range of 1 < p(T)< 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p(T)< 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of pi(0)'s in their parent jets was found to be around 0.7 for electromagnetically triggered events.
Resumo:
The longitudinal spin transfer, D(LL), from high energy polarized protons to Lambda and Lambda hyperons has been measured for the first time in proton-proton collisions at s=200 GeV with the STAR detector at the Relativistic Heavy Ion Collider. The measurements cover pseudorapidity, eta, in the range |eta|< 1.2 and transverse momenta, p(T), up to 4 GeV/c. The longitudinal spin transfer is found to be D(LL)=-0.03 +/- 0.13(stat)+/- 0.04(syst) for inclusive Lambda and D(LL)=-0.12 +/- 0.08(stat)+/- 0.03(syst) for inclusive Lambda hyperons with <
Resumo:
Precise quasielastic and alpha-transfer excitation functions, at theta(lab) = 161 degrees, have been measured at energies near the Coulomb barrier for the (16)O + (63)Cu system. This is the first time reported quasielastic barrier distribution for a medium odd-A nucleus target deduced from the data. Additional elastic scattering angular distributions data available in the literature for this system were also used in the investigation of the role of several individual channels in the reaction dynamics, by comparing the data with free-parameter coupled-channels calculations. In order to do so, the nucleus-nucleus bare potential has a double-folding potential as the real component and only a very short-range imaginary potential. The quasielastic barrier distribution has been shown to be a powerful tool in this analysis at the barrier region. A high collectivity of the (63)Cu was observed, mainly due to the strong influence of its 5/2-and 7/2-states on all reaction channels investigated. A striking influence of the reorientation of the ground-state target-spin on the elastic cross sections, taken at backward angles, was also observed.
Resumo:
High wave-vector spin waves in ultrathin Fe/W(110) films up to 20 monolayers (MLs) thick have been studied using spin-polarized electron energy-loss spectroscopy. An unusual nonmonotonous dependence of the spin wave energies on the film thickness is observed, featuring a pronounced maximum at 2 ML coverage. First-principles theoretical study reveals the origin of this behavior to be in the localization of the spin waves at the surface of the film, as well as in the properties of the interlayer exchange coupling influenced by the hybridization of the electron states of the film and substrate and by the strain.
Resumo:
We investigate the quantum integrability of the Landau-Lifshitz (LL) model and solve the long-standing problem of finding the local quantum Hamiltonian for the arbitrary n-particle sector. The particular difficulty of the LL model quantization, which arises due to the ill-defined operator product, is dealt with by simultaneously regularizing the operator product and constructing the self-adjoint extensions of a very particular structure. The diagonalizibility difficulties of the Hamiltonian of the LL model, due to the highly singular nature of the quantum-mechanical Hamiltonian, are also resolved in our method for the arbitrary n-particle sector. We explicitly demonstrate the consistency of our construction with the quantum inverse scattering method due to Sklyanin [Lett. Math. Phys. 15, 357 (1988)] and give a prescription to systematically construct the general solution, which explains and generalizes the puzzling results of Sklyanin for the particular two-particle sector case. Moreover, we demonstrate the S-matrix factorization and show that it is a consequence of the discontinuity conditions on the functions involved in the construction of the self-adjoint extensions.
Resumo:
We report the first observation of high wave vector magnon excitations in a ferromagnetic monolayer. Using spin-polarized electron energy loss spectroscopy, we observed the magnon dispersion in one atomic layer (ML) of Fe on W(110) at 120 K. The magnon energies are small in comparison to the bulk and surface Fe(110) excitations. We find an exchange parameter and magnetic anisotropy similar to that from static measurements. Our results are in sharp contrast to theoretical calculations, indicating that the present understanding of magnetism of the ML Fe requires considerable revision.
Resumo:
High-resolution synchrotron x-ray diffraction measurements were performed on single crystalline and powder samples of BiMn(2)O(5). A linear temperature dependence of the unit cell volume was found between T(N)=38 and 100 K, suggesting that a low-energy lattice excitation may be responsible for the lattice expansion in this temperature range. Between T(*)similar to 65 K and T(N), all lattice parameters showed incipient magnetoelastic effects, due to short-range spin correlations. An anisotropic strain along the a direction was also observed below T(*). Below T(N), a relatively large contraction of the a parameter following the square of the average sublattice magnetization of Mn was found, indicating that a second-order spin Hamiltonian accounts for the magnetic interactions along this direction. On the other hand, the more complex behaviors found for b and c suggest additional magnetic transitions below T(N) and perhaps higher-order terms in the spin Hamiltonian. Polycrystalline samples grown by distinct routes and with nearly homogeneous crystal structure above T(N) presented structural phase coexistence below T(N), indicating a close competition amongst distinct magnetostructural states in this compound.
Resumo:
The elementary surface excitations are studied by spin-polarized electron energy loss spectroscopy on a prototype oxide surface [an oxygen passivated Fe(001)-p(1 x 1) surface], where the various excitations coexist. For the first time, the surface phonons and magnons are measured simultaneously and are distinguished based on their different spin nature. The dispersion relation of all excitations is probed over the entire Brillouin zone. The different phonon modes observed in our experiment are described by means of ab initio calculations.
Resumo:
Motivated by the quasi-one-dimensional antiferromagnet CaV(2)O(4), we explore spin-orbital systems in which the spin modes are gapped but orbitals are near a macroscopically degenerate classical transition. Within a simplified model we show that gapless orbital liquid phases possessing power-law correlations may occur without the strict condition of a continuous orbital symmetry. For the model proposed for CaV(2)O(4), we find that an orbital phase with coexisting order parameters emerges from a multicritical point. The effective orbital model consists of zigzag-coupled transverse field Ising chains. The corresponding global phase diagram is constructed using field theory methods and analyzed near the multicritical point with the aid of an exact solution of a zigzag XXZ model.
Resumo:
Using the density matrix renormalization group, we investigate the Renyi entropy of the anisotropic spin-s Heisenberg chains in a z-magnetic field. We considered the half-odd-integer spin-s chains, with s = 1/2, 3/2, and 5/2, and periodic and open boundary conditions. In the case of the spin-1/2 chain we were able to obtain accurate estimates of the new parity exponents p(alpha)((p)) and p(alpha)((o)) that gives the power-law decay of the oscillations of the alpha-Renyi entropy for periodic and open boundary conditions, respectively. We confirm the relations of these exponents with the Luttinger parameter K, as proposed by Calabrese et al. [Phys. Rev. Lett. 104, 095701 (2010)]. Moreover, the predicted periodicity of the oscillating term was also observed for some nonzero values of the magnetization m. We show that for s > 1/2 the amplitudes of the oscillations are quite small and get accurate estimates of p(alpha)((p)) and p(alpha)((o)) become a challenge. Although our estimates of the new universal exponents p(alpha)((p)) and p(alpha)((o)) for the spin-3/2 chain are not so accurate, they are consistent with the theoretical predictions.
Resumo:
Large-scale cortical networks exhibit characteristic topological properties that shape communication between brain regions and global cortical dynamics. Analysis of complex networks allows the description of connectedness, distance, clustering, and centrality that reveal different aspects of how the network's nodes communicate. Here, we focus on a novel analysis of complex walks in a series of mammalian cortical networks that model potential dynamics of information flow between individual brain regions. We introduce two new measures called absorption and driftness. Absorption is the average length of random walks between any two nodes, and takes into account all paths that may diffuse activity throughout the network. Driftness is the ratio between absorption and the corresponding shortest path length. For a given node of the network, we also define four related measurements, namely in-and out-absorption as well as in-and out-driftness, as the averages of the corresponding measures from all nodes to that node, and from that node to all nodes, respectively. We find that the cat thalamo-cortical system incorporates features of two classic network topologies, Erdos-Renyi graphs with respect to in-absorption and in-driftness, and configuration models with respect to out-absorption and out-driftness. Moreover, taken together these four measures separate the network nodes based on broad functional roles (visual, auditory, somatomotor, and frontolimbic).
Resumo:
Positional information in developing embryos is specified by spatial gradients of transcriptional regulators. One of the classic systems for studying this is the activation of the hunchback (hb) gene in early fruit fly (Drosophila) segmentation by the maternally-derived gradient of the Bicoid (Bcd) protein. Gene regulation is subject to intrinsic noise which can produce variable expression. This variability must be constrained in the highly reproducible and coordinated events of development. We identify means by which noise is controlled during gene expression by characterizing the dependence of hb mRNA and protein output noise on hb promoter structure and transcriptional dynamics. We use a stochastic model of the hb promoter in which the number and strength of Bcd and Hb (self-regulatory) binding sites can be varied. Model parameters are fit to data from WT embryos, the self-regulation mutant hb(14F), and lacZ reporter constructs using different portions of the hb promoter. We have corroborated model noise predictions experimentally. The results indicate that WT (self-regulatory) Hb output noise is predominantly dependent on the transcription and translation dynamics of its own expression, rather than on Bcd fluctuations. The constructs and mutant, which lack self-regulation, indicate that the multiple Bcd binding sites in the hb promoter (and their strengths) also play a role in buffering noise. The model is robust to the variation in Bcd binding site number across a number of fly species. This study identifies particular ways in which promoter structure and regulatory dynamics reduce hb output noise. Insofar as many of these are common features of genes (e. g. multiple regulatory sites, cooperativity, self-feedback), the current results contribute to the general understanding of the reproducibility and determinacy of spatial patterning in early development.
Resumo:
We discuss an approximation for the dynamic charge response of nonlinear spin-1/2 Luttinger liquids in the limit of small momentum. Besides accounting for the broadening of the charge peak due to two-holon excitations, the nonlinearity of the dispersion gives rise to a two-spinon peak, which at zero temperature has an asymmetric line shape. At finite temperature the spin peak is broadened by diffusion. As an application, we discuss the density and temperature dependence of the Coulomb drag resistivity due to long-wavelength scattering between quantum wires.
Resumo:
The study of structures based on nonstoichiometric SnO(2-x) compounds, besides experimentally observed, is a challenging task taking into account their instabilities. In this paper, we report on single crystal Sn(3)O(4) nanobelts, which were successfully grown by a carbothermal evaporation process of SnO(2) powder in association with the well known vapor-solid mechanism. By combining the structural data and transport properties, the samples were investigated. The results showed a triclinic semiconductor structure with a fundamental gap of 2.9 eV. The semiconductor behavior was confirmed by the electron transport data, which pointed to the variable range hopping process as the main conduction mechanism, thus giving consistent support to the mechanisms underlying the observed semiconducting character.
Resumo:
We investigate the intrinsic spin Hall effect in two-dimensional electron gases in quantum wells with two subbands, where a new intersubband-induced spin-orbit coupling is operative. The bulk spin Hall conductivity sigma(z)(xy) is calculated in the ballistic limit within the standard Kubo formalism in the presence of a magnetic field B and is found to remain finite in the B=0 limit, as long as only the lowest subband is occupied. Our calculated sigma(z)(xy) exhibits a nonmonotonic behavior and can change its sign as the Fermi energy (the carrier areal density n(2D)) is varied between the subband edges. We determine the magnitude of sigma(z)(xy) for realistic InSb quantum wells by performing a self-consistent calculation of the intersubband-induced spin-orbit coupling.