959 resultados para NEAR-SURFACE STRUCTURE
Resumo:
The equator to high southern latitude sea surface and vertical temperature gradients are reconstructed from oxygen isotope values of planktonic and benthic foraminifers for the following five time intervals: late Paleocene, early Eocene, early middle Eocene, late Eocene, and early Oligocene. Paleotemperatures are calculated using standard oxygen isotope/temperature equations with adjustments to account for (1) variations in sea water delta18O related to changes in global ice volume over time and (2) latitudinal gradients in surface water delta18O. These reconstructions indicate that sea-surface temperatures (SST) of the Southern Oceans in the early Eocene were as high as 15°C, whereas temperatures during the late Paleocene and early middle Eocene reached maximum levels of 10°-12°C. By the late Eocene and early Oligocene high latitude SST had declined to 6 and 4°C, respectively. For most of the early Paleogene, low latitude sub-tropical temperatures remained constant and well within the range of Holocene temperatures (24°-25°C) but by the late Eocene and early Oligocene declined to values in the range of 18° to 22°C. The late Paleogene apparent decline in tropical temperatures, however, might be artificial because of dissolution of near-surface foraminifera tests which biased sediment assemblages toward deeper-dwelling foraminifera. Moreover, according to recent plate reconstructions, it appears that the majority of sites upon which the late Eocene and early Oligocene tropical temperatures were previously established were located either in or near regions likely to have been influenced by upwelling. Global deepwater temperature on average paralleled southern ocean SST for most of the Paleogene. We speculate based on the overall timing and character of marine sea surface temperature variation during the Paleogene that some combination of both higher levels of greenhouse gases and increased heat transport was responsible for the exceptional high-latitude warmth of the early Eocene.
Resumo:
The distribution and speciation of iron was determined along a transect in the eastern Atlantic sector (6°E) of the Southern Ocean during a collaborative Scandinavian/South African Antarctic cruise conducted in late austral summer (December 1997/January 1998). Elevated concentrations of dissolved iron (>0.4 nM) were found at 60°S in the vicinity of the Spring Ice Edge (SIE) in tandem with a phytoplankton bloom, chiefly dominated by Phaeocystis sp. This bloom had developed rapidly after the loss of the seasonal sea ice cover. The iron that fuelled this bloom was mostly likely derived from sea ice melt. In the Winter Ice Edge (WIE), around 55°S, dissolved iron concentrations were low (<0.2 nM) and corresponded to lower biological productivity, biomass. In the Antarctic Polar Front, at approximately 50°S, a vertical profile of dissolved iron showed low concentrations (<0.2 nM); however, a surface survey showed higher concentrations (1-3 nM), and considerable patchiness in this dynamic frontal region. The chemical speciation of iron was dominated by organic complexation throughout the study region. Organic iron-complexing ligands ([L]) ranged from 0.9 to 3.0 nM Fe equivalents, with complex stability log K'(FeL) = 21.4-23.5. Estimated concentrations of inorganic iron (Fe') ranged from 0.03 to 0.79 pM, with the highest values found in the Phaeocystis bloom in the SIE. A vertical profile of iron-complexing ligands in the WIE showed a maximum consistent with a biological source for ligand production and near surface minimum possibly consistent with loss via photodecomposition. This work further confirms the role iron that has in the Southern Ocean in limiting primary productivity.
Resumo:
We present Mg/Ca data for Globigerina bulloides from 10 core top sites in the southwest Pacific Ocean analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Mg/Ca values in G. bulloides correlate with observed ocean temperatures (7°C-19°C), and when combined with previously published data, an integrated Mg/Ca-temperature calibration for 7°C-31°C is derived where Mg/Ca (mmol/mol) = 0.955 * e**(0.068 * T) (r**2 = 0.95). Significant variability of Mg/Ca values (20%-30%) was found for the four visible chambers of G. bulloides, with the final chamber consistently recording the lowest Mg/Ca and is interpreted, in part, to reflect changes in the depth habitat with ontogeny. Incipient and variable dissolution of the thin and fragile final chamber, and outermost layer concomitantly added to all chambers, caused by different cleaning techniques prior to solution-based ICPMS analyses, may explain the minor differences in previously published Mg/Ca-temperature calibrations for this species. If the lower Mg/Ca of the final chamber reflects changes in depth habitat, then LA-ICPMS of the penultimate (or older) chambers will most sensitively record past changes in near-surface ocean temperatures. Mean size-normalized G. bulloides test weights correlate negatively with ocean temperature (T = 31.8 * e**(-30.5*wtN); r**2 = 0.90), suggesting that in the southwest Pacific Ocean, temperature is a prominent control on shell weight in addition to carbonate ion levels.
Resumo:
The ice cap on Berkner Island is grounded on bedrock within the Filchner-Ronne Ice Shelf and is, therefore, expected to be a well-suited place to retrieve long-term ice-core records reflecting the environmental situation of the Weddell Sea region. Shallow firn cores were drilled to 11 m at the two main summits of Berkner Island and analysed in high depth resolution for electrical d.c. conductivity (ECM), stable isotopes, chloride, sulphate, nitrate and methane-sulphonate (MSA). From the annual layering of dD and non-sea-salt (nss) sulphate, a mean annual snow accumulation of 26.6 cm water at the north dome and 17.4 cm water at the south dome are obtained. As a result of ineffective wind scouring indicated by a relatively low near-surface snow density, regular annual cycles are found for all species at least in the upper 4-5 m. Post depositional changes are responsible for a substantial decrease of the seasonal dD and nitrate amplitude as well as for considerable migration of the MSA signal operating below a depth of 3-4 m. The mean chemical and isotopic firn properties at the south dome correspond to the situation on the Filchner-Ronne Ice shelf at a comparable distance to the coast, whereas the north dome is found to be more influenced by maritime air masses. Persistent high sea-salt levels in winter snow at Berkner Island heavily obscure the determination of nss sulphate probably due to sulphate fractionation in the Antartic sea-salt aerosols. Estimated time-scales predict ages at 400 m depth to be ca. 2000 years for the north and ca. 3000 years for the south dome. Pleistocene ice is expected in the bottom 200 and 300 m, respectively.
Resumo:
The accumulation and distribution of the 2H content of near-surface layers in the eastern part of the Ronne Ice Shelf were determined from 16 firn cores drilled to about 10 m depth during the Filchner IIIa and IV campaigns in 1990 and 1992, respectively. The cores were dated stratigraphically by seasonal d2H variations in the firn. In addition, 3H and high-resolution chemical profiles were used to assist in dating. Both the accumulation rate and the stable-isotope content decrease with increasing distance from the ice edge: the d2H values range from about -195 per mil at the ice edge to -250 per mil at BAS sites 5 and 6, south of Henry Ice Rise, and the accumulation rates from about 210 to 90 kg/m**2/a. The d2H values of the near-surface firn and the 10 m firn temperatures (Theta) at individual sites are very well correlated: ddelta2H/dTheta=(10.3±0.6)per mil /K; r = 0.97. The d2H profiles of the two ice cores B13 and B15 drilled in 1990 and 1992 to 215 and 320 m depth, respectively, reflect the gradual depletion in 2H in the firn upstream of the drill sites. Comparison with tlie surface data indicates that the ice above 142 m in core B15 and above 137 m in core B13 was deposited on the ice shelf, whereas the deeper ice, down to 152.8 m depth, most probably originated from the margin of the Antarctic ice sheet.