943 resultados para Metallic electrodes
Resumo:
We present a numerical simulations, fabrication and experimental results for on-chip focusing of surface plasmon polaritons (SPPs) in metal nanotip coupled to the silicon waveguide. © 2011 Optical Society of America.
Resumo:
Electro-optic switching in short-pitch polymer stabilized chiral nematic liquid crystals was studied and the relative contributions of flexoelectric and dielectric coupling were investigated: polymer stabilization was found to effectively suppress unwanted textural transitions of the chiral nematic liquid crystal and thereby enhance the electro-optical performance (high optical contrast for visible light, a near ideal optical hysteresis, fast electro-optic response). Test cells were studied that possessed interdigitated electrodes to electrically address the liquid crystal. Based on simulations, a well-fitted phenomenological description of the electro-optic response was derived considering both flexoelectro-optic and Kerr-effect based electro-optic response. © 2014 AIP Publishing LLC.
Resumo:
Herein we report on the transport characteristics of rapid pulsed vacuum-arc thermally annealed, individual and network multi-walled carbon nanotubes. Substantially reduced defect densities (by at least an order of magnitude), measured by micro-Raman spectroscopy, and were achieved by partial reconstruction of the bamboo-type defects during thermal pulsing compared with more traditional single-pulse thermal annealing. Rapid pulsed annealed processed networks and individual multi-walled nanotubes showed a consistent increase in conductivity (of over a factor of five at room temperature), attributed to the reduced number density of resistive axial interfaces and, in the case of network samples, the possible formation of structural bonds between crossed nanotubes. Compared to the highly defective as-grown nanotubes, the pulsed annealed samples exhibited reduced temperature sensitivity in their transport characteristics signifying the dominance of scattering events from structural defects. Transport measurements in the annealed multi-walled nanotubes deviated from linear Ohmic, typically metallic, behavior to an increasingly semiconducting-like behavior attributed to thermally induced axial strains. Rapid pulsed annealed networks had an estimated band gap of 11.26 meV (as-grown; 6.17 meV), and this observed band gap enhancement was inherently more pronounced for individual nanotubes compared with the networks most likely attributed to mechanical pinning effect of the probing electrodes which possibly amplifies the strain induced band gap. In all instances the estimated room temperature band gaps increased by a factor of two. The gating performance of back-gated thin-film transistor structures verified that the observed weak semiconductivity (p-type) inferred from the transport characteristic at room temperature. © 2014 Copyright Taylor & Francis Group, LLC.
Resumo:
We investigate numerically and experimentally the on-chip nanoscale focusing of surface plasmon polaritons (SPPs) in metallic nanotip coupled to the silicon waveguide. Strong field enhancement is observed at the apex of the tip. © 2010 Optical Society of America.
Resumo:
The possibility of enhancing the frequency performance of electrochemical capacitors by tailoring the nanostructure of the carbon electrode to increase electrolyte permeability is demonstrated. Highly porous, vertically oriented carbon electrodes which are in direct electrical contact with the metallic current collector are produced via MPECVD growth on metal foils. The resulting structure has a capacitance and frequency performance between that of an electrolytic capacitor and an electrochemical capacitor. Fully packaged devices are produced on Ni and Cu current collectors and performance compared to state-of-the-art electrochemical capacitors and electrolytic capacitors. The extension of capacitive behavior to the AC regime (100 Hz) opens up an avenue for a number of new applications where physical volume of the capacitor may be significantly reduced. © 2014 Pritesh Hiralal et al.
Resumo:
A new method to fabricate nanoscale metallic air-bridges has been investigated. The pillar patterns of the air-bridge were defined on a SiO2, sacrificial layer by electron-beam lithography combined with inductively coupled plasma etching. Thereafter, the span (suspended part between the pillars) patterns were defined with a second electron-beam exposure on a PMMA/PMMA-MAA resist system. The fabrication process was completed by subsequent metal electron-beam evaporation, lift-off in acetone, and removal of the sacrificial layer in a buffered hydrofluoric (HF) solution. Air-bridges with two different geometries (line-shaped and cross-shaped) were studied in detail. The narrowest width of the air-bridges was around 200 nm, and the typical length of the air-bridges was 2-5 mu m. The advantages of our method are the simplicity of carrying out electron-beam exposure with good reproducibility and the capability of more accurate control of the pillar sizes and shapes of the air-bridge. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Surface plasmons(SPs) generated in nano metallic gratings on medium layer can greatly enhance the transmission field through the metallic gratings. The enhancement effect is achieved from lambda = 500 nm to near-infrared domain. The enhancement rate is about 110 % at the wavelength of about 6 10 nm and about 180 % at lambda = 700 nm and 740 nm where most kinds of thin film solar cells have a high spectral response. These structures should provide a promising way to increase the coupling efficiency of thin film solar cells and optical detectors of different wavelength response.
Resumo:
We theoretically study the conducting electronic contribution to the cohesive force in a metallic nanowire irradiated under a transversely polarized external electromagnetic field at low temperatures and in the ballistic regime. In the framework of the free-electron model, we have obtained a time-dependent two-level electronic wavefunction by means of a unitary transformation. Using a thermodynamic statistical approach with this wavefunction, we have calculated the cohesive force in the nanowire. We show that the cohesive force can be divided into two components, one of which is independent of the electromagnetic field (static component), which is consistent with the existing results in the literature. The magnitude of the other component is proportional to the electromagnetic field strength. This extra component of the cohesive force is originally from the coherent coupling between the two lateral energy levels of the wire and the electromagnetic field.
Resumo:
We have studied magnetic and transport properties of insulating and metallic (Ga,Mn)As layers before and after annealing. A dramatic increase of the ferromagnetic transition temperature T-C by postgrowth annealing has been realized in both insulating and metallic (Ga,Mn)As. The as-grown insulating (Ga,Mn)As can be turned into metallic by the low-temperature annealing. For all the metallic (Ga,Mn)As, a characteristic feature in the temperature dependence of sheet resistance appears around T-C. This phenomenon may provide a simple and more convenient method to determine the T-C of metallic (Ga,Mn)As compared with superconducting quantum interference device (SQUID) measurement. Moreover, the T-C of the metallic (Ga,Mn)As obtained by this way is in good agreement with that measured by a SQUID magnetometer. (C) 2005 American Institute of Physics.
Resumo:
ZnO thin films with highly c-axis orientation have been fabricated on p-type Si(1 1 1) substrates at 400 degrees C by pulsed laser deposition (PLD) from a metallic Zn target with oxygen pressures between 0.1 and 0.7 mbar. Experimental results indicate that the films deposited at 0.3 and 0.5 mbar have better crystalline and optical quality and flatter surfaces than the films prepared at other pressures. The full width at half maximum (FWHM) of (0 0 0 2) diffraction peak decreases remarkably from 0.46 to 0.19 degrees with increasing annealing temperature for the film prepared at 0.3 mbar. In photoluminescence (PL) spectra at room temperature, the annealed film at 700 degrees C exhibits a smaller ultraviolet (UV) peak FWHM of 108 meV than the as-grown film (119 meV). However, an enhanced deep-level emission is observed. Possible origins to above results are discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The coupling of surface plasmons to the photonic modes in hexagonal textured metallic microcavity was studied. The modified photonic modes enable efficient coupling with the luminescence source in the microcavity. Hexagonal photonic crystal lattice has higher folding symmetry providing more channels for surface plasmon coupling in different in-plane directions, i.e., more isotropic light extraction profile than one-or two-dimensional gratings. Results show that strong coupling between surface plasmon modes and the waveguide mode in the microcavity has led to angle-selective enhanced light extraction and it was as much as 12 times more light extracted compare to planar microcavity. (c) 2006 American Institute of Physics.
Resumo:
The techniques of fabricating metallic air bridges using different resists in a one-step electron beam lithography are presented. The exposure process employed a single-layer polymethyl methacrylate (PMMA) or photoresists with either different doses in the span and feet areas or with varying acceleration voltage of the electron beam. The process using photoresists with different doses has produced air bridges more stable than what the PMMA method using various acceleration voltages would achieve. Using this method, air bridges up to 12 mu m long have been fabricated. The length and height of these metallic air bridges vary with the photoresist thickness. (c) 2006 American Institute of Physics.
Resumo:
In this paper fabrication of high power light emitting diodes (LEDs) with combined transparent electrodes on both P-GaN and N-GaN have been demonstrated. Simulation and experimental results show that comparing with traditional metal N electrodes the efficacy of LEDs with transparent N electrode is increased by more than 10% and it is easier in process than the other techniques. Further more, combining the transparent electrodes with dielectric anti-reflection film, the extraction efficiency can be improved by 5%. At the same time, the transparent electrodes were protected by the dielectric film and the reliability of LEDs can be improved.
Resumo:
A new method has been developed to selectively fabricate nano-gap electrodes and nano-channels by conventional lithography. Based on a sacrificial spacer process, we have successfully obtained sub-100-nm nano-gap electrodes and nano-channels and further reduced the dimensions to 20 nm by shrinking the sacrificial spacer size. Our method shows good selectivity between nano-gap electrodes and nano-channels due to different sacrificial spacer etch conditions. There is no length limit for the nano-gap electrode and the nano-channel. The method reported in this paper also allows for wafer scale fabrication, high throughput, low cost, and good compatibility with modern semiconductor technology.
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-07T01:33:41Z No. of bitstreams: 1 ApplPhysLett_96_213505.pdf: 1153920 bytes, checksum: 69931d8deb797813dd478b5dd0e292c0 (MD5)