959 resultados para Melt
Resumo:
A drag law accounting for Ekman rotation adjacent to a flat, horizontal bou ndary is proposed for use in a plume model that is written in terms of the depth-mean velocity. The drag l aw contains a variable turning angle between the mean velocity and the drag imposed by the turbulent bound ary layer. The effect of the variable turning angle in the drag law is studied for a plume of ice shelf wat er (ISW) ascending and turning beneath an Antarctic ice shelf with draft decreasing away from the groundi ng line. As the ISW plume ascends the sloping ice shelf–ocean boundary, it can melt the ice shelf, wh ich alters the buoyancy forcing driving the plume motion. Under these conditions, the typical turning ang le is of order 10° over most of the plume area for a range of drag coefficients (the minus sign arises for th e Southern Hemisphere). The rotation of the drag with respect to the mean velocity is found to be signifi cant if the drag coefficient exceeds 0.003; in this case the plume body propagates farther along and across the b ase of the ice shelf than a plume with the standard quadratic drag law with no turning angle.
Resumo:
Over Arctic sea ice, pressure ridges and floe andmelt pond edges all introduce discrete obstructions to the flow of air or water past the ice and are a source of form drag. In current climate models form drag is only accounted for by tuning the air–ice and ice–ocean drag coefficients, that is, by effectively altering the roughness length in a surface drag parameterization. The existing approach of the skin drag parameter tuning is poorly constrained by observations and fails to describe correctly the physics associated with the air–ice and ocean–ice drag. Here, the authors combine recent theoretical developments to deduce the total neutral form drag coefficients from properties of the ice cover such as ice concentration, vertical extent and area of the ridges, freeboard and floe draft, and the size of floes and melt ponds. The drag coefficients are incorporated into the Los Alamos Sea Ice Model (CICE) and show the influence of the new drag parameterization on the motion and state of the ice cover, with the most noticeable being a depletion of sea ice over the west boundary of the Arctic Ocean and over the Beaufort Sea. The new parameterization allows the drag coefficients to be coupled to the sea ice state and therefore to evolve spatially and temporally. It is found that the range of values predicted for the drag coefficients agree with the range of values measured in several regions of the Arctic. Finally, the implications of the new form drag formulation for the spinup or spindown of the Arctic Ocean are discussed.
Resumo:
Seasonal-to-interannual predictions of Arctic sea ice may be important for Arctic communities and industries alike. Previous studies have suggested that Arctic sea ice is potentially predictable but that the skill of predictions of the September extent minimum, initialized in early summer, may be low. The authors demonstrate that a melt season “predictability barrier” and two predictability reemergence mechanisms, suggested by a previous study, are robust features of five global climate models. Analysis of idealized predictions with one of these models [Hadley Centre Global Environment Model, version 1.2 (HadGEM1.2)], initialized in January, May and July, demonstrates that this predictability barrier exists in initialized forecasts as well. As a result, the skill of sea ice extent and volume forecasts are strongly start date dependent and those that are initialized in May lose skill much faster than those initialized in January or July. Thus, in an operational setting, initializing predictions of extent and volume in July has strong advantages for the prediction of the September minimum when compared to predictions initialized in May. Furthermore, a regional analysis of sea ice predictability indicates that extent is predictable for longer in the seasonal ice zones of the North Atlantic and North Pacific than in the regions dominated by perennial ice in the central Arctic and marginal seas. In a number of the Eurasian shelf seas, which are important for Arctic shipping, only the forecasts initialized in July have continuous skill during the first summer. In contrast, predictability of ice volume persists for over 2 yr in the central Arctic but less in other regions.
Resumo:
We present a new concept for rapid and fully portable Prostate Specific Antigen (PSA) measurement, termed “Lab-in-a-Briefcase”, which integrates an affordable microfluidic ELISA platform utilising a melt-extruded fluoropolymer Micro Capillary Film (MCF) containing 10 bore, 200 μm internal diameter capillaries, a disposable multi-syringe aspirator (MSA) plus a sample tray pre-loaded with all required immunoassay reagents, and a portable film scanner for colorimetric signal digital quantitation. Each MSA can perform 10 replicate microfluidic immunoassays on 8 samples, allowing 80measurements to be made in less than 15 minutes based on semi-automated operation and norequirement of additional fluid handling equipment. An assay was optimised for measurement of a clinically relevant range of PSA from 0.9 to 60.0 ng/ml in 15 minutes with CVs in the order of 5% based on intra-assay variability when read using a consumer flatbed film scanner. The PSA assay performance in the MSA remained robust in the presence of undiluted or 1:2 diluted human serum or whole blood, and the matrix effect could simply be overcome by extending sample incubation times. The PSA "Lab-in-a-briefcase" is particularly suited to a low-resource health setting where diagnostic labs and automated immunoassay systems are not accessible, by allowing PSA measurement outside the laboratory using affordable equipment.
Resumo:
The Surface Urban Energy and Water Balance Scheme (SUEWS) is developed to include snow. The processes addressed include accumulation of snow on the different urban surface types: snow albedo and density aging, snow melting and re-freezing of meltwater. Individual model parameters are assessed and independently evaluated using long-term observations in the two cold climate cities of Helsinki and Montreal. Eddy covariance sensible and latent heat fluxes and snow depth observations are available for two sites in Montreal and one in Helsinki. Surface runoff from two catchments (24 and 45 ha) in Helsinki and snow properties (albedo and density) from two sites in Montreal are also analysed. As multiple observation sites with different land-cover characteristics are available in both cities, model development is conducted independent of evaluation. The developed model simulates snowmelt related runoff well (within 19% and 3% for the two catchments in Helsinki when there is snow on the ground), with the springtime peak estimated correctly. However, the observed runoff peaks tend to be smoother than the simulated ones, likely due to the water holding capacity of the catchments and the missing time lag between the catchment and the observation point in the model. For all three sites the model simulates the timing of the snow accumulation and melt events well, but underestimates the total snow depth by 18–20% in Helsinki and 29–33% in Montreal. The model is able to reproduce the diurnal pattern of net radiation and turbulent fluxes of sensible and latent heat during cold snow, melting snow and snow-free periods. The largest model uncertainties are related to the timing of the melting period and the parameterization of the snowmelt. The results show that the enhanced model can simulate correctly the exchange of energy and water in cold climate cities at sites with varying surface cover.
Resumo:
Highly heterogeneous mountain snow distributions strongly affect soil moisture patterns; local ecology; and, ultimately, the timing, magnitude, and chemistry of stream runoff. Capturing these vital heterogeneities in a physically based distributed snow model requires appropriately scaled model structures. This work looks at how model scale—particularly the resolutions at which the forcing processes are represented—affects simulated snow distributions and melt. The research area is in the Reynolds Creek Experimental Watershed in southwestern Idaho. In this region, where there is a negative correlation between snow accumulation and melt rates, overall scale degradation pushed simulated melt to earlier in the season. The processes mainly responsible for snow distribution heterogeneity in this region—wind speed, wind-affected snow accumulations, thermal radiation, and solar radiation—were also independently rescaled to test process-specific spatiotemporal sensitivities. It was found that in order to accurately simulate snowmelt in this catchment, the snow cover needed to be resolved to 100 m. Wind and wind-affected precipitation—the primary influence on snow distribution—required similar resolution. Thermal radiation scaled with the vegetation structure (~100 m), while solar radiation was adequately modeled with 100–250-m resolution. Spatiotemporal sensitivities to model scale were found that allowed for further reductions in computational costs through the winter months with limited losses in accuracy. It was also shown that these modeling-based scale breaks could be associated with physiographic and vegetation structures to aid a priori modeling decisions.
Resumo:
Copolycondensation of N,N’-bis(4-hydroxybutyl)-biphenyl-3,4,3',4'-tetracarboxylic diimide at 20 and 25 mol% with bis(4-hydroxybutyl)-2,6-naphthalate produces PBN-based copoly(ester-imide)s that not only crystallise but also form a (smectic) mesophase upon cooling from the melt. Incorporation of 25 mol% imide in PBN causes the glass transition temperature (measured by DSC) to rise from 51 to 74 °C, a significant increase relative to PBN. Furthermore, increased storage- (G'), loss- (G'') and elastic (E) moduli are observed for both copoly(ester-imide)s when compared to PBN itself. Structural analysis of the 20 mol% copolymer by X-ray powder and fibre diffraction, interfaced to computational modelling, suggests a crystal structure related to that of α-PBN, in space group P-1, with cell dimensions a = 4.74, b = 6.38, c = 14.45 Å, α = 106.1, β = 122.1, γ = 97.3°, ρ = 1.37 g cm-3.
Resumo:
Biaxially oriented films produced from semi-crystalline, semi-aromatic polyesters are utilised extensively as components within various applications, including the specialist packaging, flexible electronic and photovoltaic markets. However, the thermal performance of such polyesters, specifically poly(ethylene terephthalate) (PET) and poly(ethylene-2,6-naphthalate) (PEN), is inadequate for several applications that require greater dimensional stability at higher operating temperatures. The work described in this project is therefore primarily focussed upon the copolymerisation of rigid comonomers with PET and PEN, in order to produce novel polyester-based materials that exhibit superior thermomechanical performance, with retention of crystallinity, to achieve biaxial orientation. Rigid biphenyldiimide comonomers were readily incorporated into PEN and poly(butylene-2,6-naphthalate) (PBN) via a melt-polycondensation route. For each copoly(ester-imide) series, retention of semi-crystalline behaviour is observed throughout entire copolymer composition ratios. This phenomenon may be rationalised by cocrystallisation between isomorphic biphenyldiimide and naphthalenedicarboxylate residues, which enables statistically random copolymers to melt-crystallise despite high proportions of imide sub-units being present. In terms of thermal performance, the glass transition temperature, Tg, linearly increases with imide comonomer content for both series. This facilitated the production of several high performance PEN-based biaxially oriented films, which displayed analogous drawing, barrier and optical properties to PEN. Selected PBN copoly(ester-imide)s also possess the ability to either melt-crystallise, or form a mesophase from the isotropic state depending on the applied cooling rate. An equivalent synthetic approach based upon isomorphic comonomer crystallisation was subsequently applied to PET by copolymerisation with rigid diimide and Kevlar®-type amide comonomers, to afford several novel high performance PET-based copoly(ester-imide)s and copoly(ester-amide)s that all exhibited increased Tgs. Retention of crystallinity was achieved in these copolymers by either melt-crystallisation or thermal annealing. The initial production of a semi-crystalline, PET-based biaxially oriented film with a Tg in excess of 100 °C was successful, and this material has obvious scope for further industrial scale-up and process development.
Resumo:
The atmospheric response to an idealized decline in Arctic sea ice is investigated in a novel fully coupled climate model experiment. In this experiment two ensembles of single-year model integrations are performed starting on 1 April, the approximate start of the ice melt season. By perturbing the initial conditions of sea ice thickness (SIT), declines in both sea ice concentration and SIT, which result in sea ice distributions that are similar to the recent sea ice minima of 2007 and 2012, are induced. In the ice loss regions there are strong (~3 K) local increases in sea surface temperature (SST); additionally, there are remote increases in SST in the central North Pacific and subpolar gyre in the North Atlantic. Over the central Arctic there are increases in surface air temperature (SAT) of ~8 K due to increases in ocean–atmosphere heat fluxes. There are increases in SAT over continental North America that are in good agreement with recent changes as seen by reanalysis data. It is estimated that up to two-thirds of the observed increase in SAT in this region could be related to Arctic sea ice loss. In early summer there is a significant but weak atmospheric circulation response that projects onto the summer North Atlantic Oscillation (NAO). In early summer and early autumn there is an equatorward shift of the eddy-driven jet over the North Atlantic as a result of a reduction in the meridional temperature gradients. In winter there is no projection onto a particular phase of the NAO.
Resumo:
This study investigates the numerical simulation of three-dimensional time-dependent viscoelastic free surface flows using the Upper-Convected Maxwell (UCM) constitutive equation and an algebraic explicit model. This investigation was carried out to develop a simplified approach that can be applied to the extrudate swell problem. The relevant physics of this flow phenomenon is discussed in the paper and an algebraic model to predict the extrudate swell problem is presented. It is based on an explicit algebraic representation of the non-Newtonian extra-stress through a kinematic tensor formed with the scaled dyadic product of the velocity field. The elasticity of the fluid is governed by a single transport equation for a scalar quantity which has dimension of strain rate. Mass and momentum conservations, and the constitutive equation (UCM and algebraic model) were solved by a three-dimensional time-dependent finite difference method. The free surface of the fluid was modeled using a marker-and-cell approach. The algebraic model was validated by comparing the numerical predictions with analytic solutions for pipe flow. In comparison with the classical UCM model, one advantage of this approach is that computational workload is substantially reduced: the UCM model employs six differential equations while the algebraic model uses only one. The results showed stable flows with very large extrudate growths beyond those usually obtained with standard differential viscoelastic models. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Conventional procedures employed in the modeling of viscoelastic properties of polymer rely on the determination of the polymer`s discrete relaxation spectrum from experimentally obtained data. In the past decades, several analytical regression techniques have been proposed to determine an explicit equation which describes the measured spectra. With a diverse approach, the procedure herein introduced constitutes a simulation-based computational optimization technique based on non-deterministic search method arisen from the field of evolutionary computation. Instead of comparing numerical results, this purpose of this paper is to highlight some Subtle differences between both strategies and focus on what properties of the exploited technique emerge as new possibilities for the field, In oder to illustrate this, essayed cases show how the employed technique can outperform conventional approaches in terms of fitting quality. Moreover, in some instances, it produces equivalent results With much fewer fitting parameters, which is convenient for computational simulation applications. I-lie problem formulation and the rationale of the highlighted method are herein discussed and constitute the main intended contribution. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 113: 122-135, 2009
Resumo:
Ribbons of nominal composition (Pr(9.5)Fe(84.5)B(6))(0.96)Cr(0.01)(TiC)(0.03) were produced by arc-melting and melt-spinning the alloys on a Cu wheel. X-ray diffraction (XRD) reveals two main phases, one based upon alpha-Fe and the other upon Pr(2)Fe(14)B. The ribbons show exchange spring behavior with H (c) = 12.5 kOe and (BH)(max) = 13.6 MGOe when these two phases are well coupled. Transmission electron microscopy revealed the coupled behavior is observed when the microstructure consists predominantly of alpha-Fe grains (diameter similar to 100 nm.) surrounded by hard material containing Pr(2)Fe(14)B. The microstructure is discussed in terms of a calculation by Skomski and Coey. A first-order-reversal-curve (FORC) analysis was performed for both a well-coupled sample and a poorly coupled sample. The FORC diagrams show two strong peaks for both the poorly coupled sample and for the well-coupled material. In both cases, the localization of the FORC probability suggests magnetizing interactions between particles. Switching field distributions were calculated and are consistent with the sample microstructure.
Resumo:
Ribbons of nominal composition (Pr(9.5)Fe(84.5)B(6))(0.96)Cr(0.01)(TiC)(0.03) were produced by arc-melting and melt-spinning the alloys on a Cu wheel. X-ray diffraction reveals two main phases, one based upon alpha-Fe and the other upon Pr(2)Fe(14)B. The ribbons show exchange spring behavior with H(c)=12.5 kOe and (BH)(max)= 13.6 MGOe when these two phases are well coupled. Transmission electron microscopy revealed that the coupled behavior is observed when the microstructure consists predominantly of alpha-Fe grains(diameter similar to 100 nm.) surrounded by hard material containing Pr(2)Fe(14)B. A first-order-reversal-curve (FORC) analysis was performed for both a well-coupled sample and a partially-coupled sample. The FORC diagrams show two strong peaks for both the partially-coupled sample and for the well coupled material. In both cases, the localization of the FORC probability suggests demagnetizing interactions between particles. Switching field distributions were calculated and are consistent with the sample microstructure. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The addition of both Ti-C and Cr as grain refiners in Nd-Fe-B nanocomposites substantially increases the coercive field Hc. This motived our investigation of the effect of Ti-C and Cr on Pr-Fe-B nanocomposites. Melt-spun ribbons of composition (Pr(9.5)Fe(84.5)B(6))(0.97-x)Cr(x)(TiC)(0.03)(x = 0; 0.25; 0.5; 0.75; 1) and (Nd(9.5)Fe(84.5)B(6))(0.97-x)Cr(x)(TiC)(0.03)(x = 0.5 and 1) were produced for study. For a Pr nanocomposite with 1% Cr, Hc = 12.5 kOe. However, the energy product was limited to 13.6 MGOe by the remanence value. Rietveld analysis of X-ray spectra showed the ribbons to consist of predominantly hard (similar to 70 wt%) R(2)Fe(14)B, the soft phase being (similar to 30 wt%) alpha-Fe. Mossbauer measurements at 300 K are consistent with a reduced hyperfine field for the hard magnetic phase due to the Cr addition. Analysis of transmission electron microscopy images showed the Pr nanocomposite with 1% Cr to have an increased average grain size.
Resumo:
The purpose of the present work is to report studies on structural phase transition for PMN-xPT ferroelectric, with melt PbTiO3 composition around the MPB (x = 0.35 mol %), using infrared spectroscopy technique. The study was centered on monitoring the behavior of the 1-(NbO), 1-(TiO) and 1-(MgO) stretching modes as a function of temperature. The increasing as a function of temperature for 1-(TiO) and 1-(MgO) modes, observed between 230 and 300 K, can be related to the monoclinic (MC) + tetragonal (T) phase coexistence in the PMN-PT.