656 resultados para Mathematics -- Philosophy
Resumo:
A concepção filosófica do mundo se inicia com os gregos sintetizados por Platão e Aristóteles. Para o primeiro o mundo físico é aparente e para se chegar à verdade é preciso se lembrar das idéias originais que determinam seu significado. Para o segundo as coisas físicas são dirigidas pelas idéias e para entendê-las é preciso a lógica. Durante o helenismo a escola de Alexandria elabora o neoplatonismo, a base da Patrística. Após a queda de Roma, os filósofos bizantinos guardam a herança clássica. A Igreja constrói uma visão neoplatônica da cristandade, a Escolástica. No oriente os persas também sofreram a influência grega. Entre os árabes do Oriente o pensamento neoplatônico orienta filósofos e religiosos de forma que para eles a razão e a fé não se separam. Aí a ciências se desenvolvem na física, na alquimia, na botânica, na medicina, na matemática e na lógica, até serem subjugadas pela doutrina conservadora dos otomanos. Na Espanha mulçumana sem as restrições da teologia, a filosofia de Aristóteles é mais bem compreendida do que no resto do Islã. Também aí todas as ciências se desenvolvem rápido. Mas a Espanha sucumbe aos cristãos. Os árabes e judeus apresentam Aristóteles à Europa Ocidental que elabora um Aristóteles cristão. A matemática, a física experimental, a alquimia e a medicina dos árabes influenciam intensamente o Ocidente. Os artesãos constroem instrumentos cada vez mais precisos, os navegadores constroem navios e mapas mais eficientes e minuciosos, os armeiros calculam melhor a forma de lançamento e pontaria de suas armas e os agrimensores melhor elaboram a medida de sua área de mapeamento. Os artistas principalmente italianos, a partir dos clássicos gregos e árabes, criam a perspectiva no desenho, possibilitando a matematização do espaço. Os portugueses, junto com cientistas árabes, judeus e italianos, concluem um projeto de expansão naval e ampliam os horizontes do mundo. Os pensadores italianos, como uma reação à Escolástica, constroem um pensamento humanista influenciado pelo pensamento grego clássico original e pelos últimos filósofos bizantinos. Por todas essas mudanças se inicia a construção de um novo universo e de um novo método, que viria décadas mais tarde.
Resumo:
This present research the aim to show to the reader the Geometry non-Euclidean while anomaly indicating the pedagogical implications and then propose a sequence of activities, divided into three blocks which show the relationship of Euclidean geometry with non-Euclidean, taking the Euclidean with respect to analysis of the anomaly in non-Euclidean. PPGECNM is tied to the line of research of History, Philosophy and Sociology of Science in the Teaching of Natural Sciences and Mathematics. Treat so on Euclid of Alexandria, his most famous work The Elements and moreover, emphasize the Fifth Postulate of Euclid, particularly the difficulties (which lasted several centuries) that mathematicians have to understand him. Until the eighteenth century, three mathematicians: Lobachevsky (1793 - 1856), Bolyai (1775 - 1856) and Gauss (1777-1855) was convinced that this axiom was correct and that there was another geometry (anomalous) as consistent as the Euclid, but that did not adapt into their parameters. It is attributed to the emergence of these three non-Euclidean geometry. For the course methodology we started with some bibliographical definitions about anomalies, after we ve featured so that our definition are better understood by the readers and then only deal geometries non-Euclidean (Hyperbolic Geometry, Spherical Geometry and Taxicab Geometry) confronting them with the Euclidean to analyze the anomalies existing in non-Euclidean geometries and observe its importance to the teaching. After this characterization follows the empirical part of the proposal which consisted the application of three blocks of activities in search of pedagogical implications of anomaly. The first on parallel lines, the second on study of triangles and the third on the shortest distance between two points. These blocks offer a work with basic elements of geometry from a historical and investigative study of geometries non-Euclidean while anomaly so the concept is understood along with it s properties without necessarily be linked to the image of the geometric elements and thus expanding or adapting to other references. For example, the block applied on the second day of activities that provides extend the result of the sum of the internal angles of any triangle, to realize that is not always 180° (only when Euclid is a reference that this conclusion can be drawn)
Resumo:
The general objective of this dissertation is to analyze the metaphysical aspects of "rational mechanics" of Isaac Newton, clarifying, by scientific and philosophical discourse, their main elements, with emphasis to the presence of one entity infinitely rational behind all the phenomena of nature, and to the Newton's insight as certain empiricist which, however, accepts deductions metaphysics; a philosopher-scientist. The specific objectives are detailed below: a) brief presentation of the development of modern science, since the Pre-Socratics, seeking to understand the historical conjecture that enabled the rise of Newtonian mechanics; b) presentation of the elements of scientific methodology and philosophical, aimed at comprehension of certain "Newtonian methodology", understanding how this specific methodology able to present empirical aspects, mathematics, philosophic and religious in communion; c) to understand, from the Newtonian concepts, both concerning man's role in the world as the "notional notions" of mass, space, time and movement, necessary for analysis and understanding of certain metaphysical aspects in the Newtonian physics; d) to present the Newtonian concepts related to the ether, to understand why it necessarily assumes metaphysics characteristics and mediation between the bodies; e) to present and understand the factors that lead the empiricist Newton to assume the religion in his mechanics, as well as, the existence and functions of God in nature, to object to the higher content of his metaphysics; f) to highlight the metaphysical elements of his classical mechanics, that confirm the presence of concepts like God Creator and Preserver of the natural laws; g) at last, to analyze the importance of Newton to the modern metaphysics and the legacy to philosophy of science at sec. XVII to science contemporary
Resumo:
Over the last 50 years a new research area, science education research, has arisen and undergone singular development worldwide. In the specific case of Brazil, research in science education first appeared systematically 40 years ago, as a consequence of an overall renovation in the field of science education. This evolution was also related to the political events taking place in the country. We will use the theoretical work of Rene Kaes on the development of groups and institutions as a basis for our discussion of the most important aspects that have helped the area of science education research develop into an institution and kept it operating as such. The growth of this area of research can be divided into three phases: The first was related to its beginning and early configurations; the second consisted of a process of consolidation of this institution; and the third consists of more recent developments, characterised by a multiplicity of research lines and corresponding challenges to be faced. In particular, we will analyse the special contributions to this study gleaned from the field known as the history and philosophy of science.
Resumo:
The concept of information is analyzed starting from Adams' hypothesis in The Informational Turn in Philosophy, according to which there has been a far-reaching turn in Philosophy following the publication of Turing's article "Computing Machinery and Intelligence". Adams maintains that new guidelines are being indicated in philosophical research, having the concept of "information" as the basis for treatment of classical problems, such as the relationships between mind-body, perception-action, and the nature of knowledge, amongst others. Partially agreeing with Adams, we believe, however, that his hypothesis faces difficulties, the most fundamental of which concerns the different meanings given to the concept of information. We argue that even though the concept of information underlying the mechanicist proposal of Turing, according to which "to think is to compute", is indeed being employed in Philosophy, this is not because of its mechanistic nature, but mainly due to the representationist presupposition dominant in this area. From this point of view, the informational turn in philosophy would not provide any great novelty, given that since the earliest days philosophical approaches to the nature of mind have always been mainly representationist. The novelty would not lie specifically in the Turing thesis, but in reflections on the nature of information, especially ecological information, and its relation to action.
Resumo:
The text is divided in two phases. In the first phase, consisting of three parts, the main concepts of Kant's Doctrine of Right are considered in a comprehensive approach related to: the issue of the relations between natural right and positive right, problem closely connected to that of the relations between natural state and civil state, private right and public right; to the doctrine of property and its connection with political right. on treating the right in its several types, we intend to appoint the practical reasoning as a background of the Doctrine. In the second phase, concerning its last section, the consideration on the presence of the practical reasoning into the right is placed before some specificities of Kant's phylosophy of history, with the intent of establishing the possible relation between Rechtslehre and that philosophy.
Resumo:
O propósito deste trabalho é estabelecer o caminho percorrido pelo idealismo em sua participação na construção das Ciências da Natureza desde a antigüidade até o final do século XX. Para os pensadores antigos, o mundo físico era governado pela idéia, e o modo de apreendê-la era por meio da contemplação da alma ou da observação e da lógica. Na escolástica essa idéia é Deus. Na renascença, Deus se torna matemático. em Galileu a Matemática do mundo é entendida pela experimentação. Para Descartes o mundo é mecânico e entendido por hipóteses dedutivas. Newton enxerga o mundo mecânico construído e corrigido pelo Deus geômetra e entendido pela observação e experimentação. Os empiristas retiram a idéia do universo e a colocam no espírito humano. em Kant as regras que organizam as idéias na mente também organizam o mundo mecânico. em Hegel o real só é real porque é racional, e essa racionalidade vem de Deus, que transforma o mundo natural e atinge o espírito humano. Os pensadores, influenciados por Hegel, percebem a incapacidade das leis da mecânica explicarem as leis da vida. Comte e Bergson procuram, de forma diferente, submeter às leis da Física às leis das ciências da vida. O universo mecanicista é absorvido pelo determinismo relativista e pelo probabilismo quântico. A linguagem da lógica se associa ao empirismo na descrição da ciência procurando retirar dela o idealismo e a metafísica e, após um período de florescimento, acaba não tendo sucesso. A dificuldade da apreensão do real volta a ser o problema da ciência no final do século XX, e a procura de uma possível solução reaproxima a ciência do idealismo.
Resumo:
A produção científica e filosófica de Charles Sanders PEIRCE (1839-1914), exigindo como critério para o trabalho intelectual e para a conduta da vida do pensador o absoluto rigor na construção dos conceitos e a estrita verificação experimental, teve por conseqüência desvincular o trabalho científico e filosófico de qualquer função apologética. A afirmação de que todo conhecimento do mundo da experiência e mesmo daquele elaborado pela matemática é intrinsecamente provável e falível se opôs a todo e qualquer dogmatismo e mesmo ao a priori de tradição Kantiana. O interesse pela teoria evolucionista e a coerência inabalável da filosofia e das atitudes de PEIRCE, como professor e pesquisador, encontraram profunda resistência no meio universitário e editorial de seu tempo. Num momento de grave crise na Universidade norte-americana, decorrente das transformações econômicas e políticas ocorridas com a guerra da Secessão (1861-1865), o posicionamento de PEIRCE contribuiu muito provavelmente para sua demissão como professor das Universidades de Harvard e de John Hopkins; para dificultar a publicação de seus escritos e para seu total isolamento nos últimos anos de vida.
Resumo:
The aim of this paper is to discuss teachers' perceptions of change in their thought and/or practice over time and their perceptions of what kind of experiences or challenges might have influenced those changes. Two mathematics teaching life histories of Brazilian teachers are examined, considering a context of curriculum development in the state of São Paulo, Brazil. Reflection on teachers' thought and practice and interest in their own development, including interest in their own learning of mathematics, seemed to be the most important internal aspects influencing change and development. Close support seemed to be the most important external aspect. The retrospective analysis put a good face on personal change and development. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
This chapter presents a collaborative experience between two neighbouring countries from South America: Argentina and Brazil. Our purpose is to share a model of international collaboration that we consider to be an alternative to the classical movement of early mathematical and scientific knowledge between East and West and between North and South. We start our chapter with a general discussion about the phenomenon of globalization considering some local examples. We characterize our collaboration exploring the tensions and difficulties we faced along our own professional development at the local as well as the international level. We describe the development of our prior collaborative work that established the foundation for our international collaboration portraying the local mathematics education communities. We refer to some balances that were created among our relationships, the expansion of our collaborative network, and how this particular collaboration allows us to contribute to the regional field and inform the international one. We discuss the way that the search for balance and symmetry, or at least a complementary asymmetry in our collaborative relationships, has led us to generate a genuine and equitable collaboration.