955 resultados para Liquid-chromatographic Determination
Resumo:
Ketamine is widely used in medicine in combination with several benzodiazepines including midazolam. The objectives of this study were to develop a novel HPLC-MS/SRM method capable of quantifying ketamine and norketamine using an isotopic dilution strategy in biological matrices and study the formation of norketamine, the principal metabolite of ketamine with and without the presence of midazolam, a well-known CYP3A substrate. The chromatographic separation was achieved using a Thermo Betasil Phenyl 100 x 2 mm column combined with an isocratic mobile phase composed of acetonitrile, methanol, water and formic acid (60:20:20:0.4) at a flow rate of 300 μL/min. The mass spectrometer was operating in selected reaction monitoring mode and the analytical range was set at 0.05–50 μM. The precision (%CV) and accuracy (%NOM) observed were ranging from 3.9–7.8 and 95.9.2–111.1% respectively. The initial rate of formation of norketamine was determined using various ketamine concentration and Km values of 18.4 μM, 13.8 μM and 30.8 μM for rat, dog and human liver S9 fractions were observed respectively. The metabolic stability of ketamine on liver S9 fractions was significantly higher in human (T1/2 = 159.4 min) compared with rat (T1/2 = 12.6 min) and dog (T1/2 = 7.3 min) liver S9 fractions. Moreover significantly lower IC50 and Ki values observed in human compared with rat and dog liver S9 fractions. Experiments with cDNA expressed CYP3A enzymes showed the formation of norketamine is mediated by CYP3A but results suggest an important contribution from others isoenzymes, most likely CYP2C particularly in rat.
Resumo:
Les cyanobactéries ont une place très importante dans les écosystèmes aquatiques et un nombre important d’espèces considéré comme nuisible de par leur production de métabolites toxiques. Ces cyanotoxines possèdent des propriétés très variées et ont souvent été associées à des épisodes d’empoisonnement. L’augmentation des épisodes d’efflorescence d’origine cyanobactériennes et le potentiel qu’ils augmentent avec les changements climatiques a renchéri l’intérêt de l’étude des cyanobactéries et de leurs toxines. Considérant la complexité chimique des cyanotoxines, le développement de méthodes de détection simples, sensibles et rapides est toujours considéré comme étant un défi analytique. Considérant ces défis, le développement de nouvelles approches analytiques pour la détection de cyanotoxines dans l’eau et les poissons ayant été contaminés par des efflorescences cyanobactériennes nuisibles a été proposé. Une première approche consiste en l’utilisation d’une extraction sur phase solide en ligne couplée à une chromatographie liquide et à une détection en spectrométrie de masse en tandem (SPE-LC-MS/MS) permettant l’analyse de six analogues de microcystines (MC), de l’anatoxine (ANA-a) et de la cylindrospermopsine (CYN). La méthode permet une analyse simple et rapide et ainsi que la séparation chromatographique d’ANA-a et de son interférence isobare, la phénylalanine. Les limites de détection obtenues se trouvaient entre 0,01 et 0,02 μg L-1 et des concentrations retrouvées dans des eaux de lacs du Québec se trouvaient entre 0,024 et 36 μg L-1. Une deuxième méthode a permis l’analyse du b-N-méthylamino-L-alanine (BMAA), d’ANA-a, de CYN et de la saxitoxine (STX) dans les eaux de lac contaminés. L’analyse de deux isomères de conformation du BMAA a été effectuée afin d’améliorer la sélectivité de la détection. L’utilisation d’une SPE manuelle permet la purification et préconcentration des échantillons et une dérivatisation à base de chlorure de dansyle permet une chromatographie simplifiée. L’analyse effectuée par LC couplée à la spectrométrie de masse à haute résolution (HRMS) et des limites de détections ont été obtenues entre 0,007 et 0,01 µg L-1. Des échantillons réels ont été analysés avec des concentrations entre 0,01 et 0,3 µg L-1 permettant ainsi la confirmation de la présence du BMAA dans les efflorescences de cyanobactéries au Québec. Un deuxième volet du projet consiste en l’utilisation d’une technologie d’introduction d’échantillon permettant des analyses ultra-rapides (< 15 secondes/échantillons) sans étape chromatographique, la désorption thermique à diode laser (LDTD) couplée à l’ionisation chimique à pression atmosphérique (APCI) et à la spectrométrie de masse (MS). Un premier projet consiste en l’analyse des MC totales par l’intermédiaire d’une oxydation de Lemieux permettant un bris de la molécule et obtenant une fraction commune aux multiples congénères existants des MC. Cette fraction, le MMPB, est analysée, après une extraction liquide-liquide, par LDTD-APCI-MS/MS. Une limite de détection de 0,2 µg L-1 a été obtenue et des concentrations entre 1 et 425 µg L-1 ont été trouvées dans des échantillons d’eau de lac contaminés du Québec. De plus, une analyse en parallèle avec des étalons pour divers congénères des MC a permis de suggérer la possible présence de congénères ou d’isomères non détectés. Un deuxième projet consiste en l’analyse directe d’ANA-a par LDTD-APCI-HRMS pour résoudre son interférence isobare, la phénylalanine, grâce à la détection à haute résolution. La LDTD n’offre pas de séparation chromatographique et l’utilisation de la HRMS permet de distinguer les signaux d’ANA-a de ceux de la phénylalanine. Une limite de détection de 0,2 µg L-1 a été obtenue et la méthode a été appliquée sur des échantillons réels d’eau avec un échantillon positif en ANA-a avec une concentration de 0,21 µg L-1. Finalement, à l’aide de la LDTD-APCI-HRMS, l’analyse des MC totales a été adaptée pour la chair de poisson afin de déterminer la fraction libre et liée des MC et comparer les résultats avec des analyses conventionnelles. L’utilisation d’une digestion par hydroxyde de sodium précédant l’oxydation de Lemieux suivi d’une purification par SPE a permis d’obtenir une limite de détection de 2,7 µg kg-1. Des échantillons de poissons contaminés ont été analysés, on a retrouvé des concentrations en MC totales de 2,9 et 13,2 µg kg-1 comparativement aux analyses usuelles qui avaient démontré un seul échantillon positif à 2 µg kg-1, indiquant la possible présence de MC non détectés en utilisant les méthodes conventionnelles.
Resumo:
El control d'herbicides i altres anàlits orgànics presents en el medi ambient constitueix una pràctica habitual en els laboratoris des de l'establiment de legislacions que limiten la seva concentració. Per aquesta raó, cal el desenvolupament de noves metodologies analítiques per al seguiment de compostos orgànics en el medi. Molt sovint aquests anàlits es troben a nivells traça en aigües i sòls, conjuntament amb un alt contingut de substàncies húmiques i fúlviques. Així, un dels reptes existents és el tractament de la mostra (extracció, concentració i "clean-up" d'aquests anàlits per a una bona quantificació). Aquests processos han de venir complementats per tècniques cromatogràfiques que permetin la mesura final dels anàlits. La investigació que es presenta en aquesta tesi es centra en el desenvolupament d'un mètode per a la determinació de 2,4-D i MCPA i els seus metabòlits fenòlics i d'un altre per a la determinació de cafeïna. El primer dels procediments desenvolupats s'ha aplicat al seguiment dels herbicides i els metabòlits fenòlics en sòls d'un camp de golf, mentre que el segon s'ha emprat per a la determinació de cafeïna en aigües naturals i, posteriorment, en aigües residuals.
Resumo:
Liquid chromatography-mass spectrometry (LC-MS) datasets can be compared or combined following chromatographic alignment. Here we describe a simple solution to the specific problem of aligning one LC-MS dataset and one LC-MS/MS dataset, acquired on separate instruments from an enzymatic digest of a protein mixture, using feature extraction and a genetic algorithm. First, the LC-MS dataset is searched within a few ppm of the calculated theoretical masses of peptides confidently identified by LC-MS/MS. A piecewise linear function is then fitted to these matched peptides using a genetic algorithm with a fitness function that is insensitive to incorrect matches but sufficiently flexible to adapt to the discrete shifts common when comparing LC datasets. We demonstrate the utility of this method by aligning ion trap LC-MS/MS data with accurate LC-MS data from an FTICR mass spectrometer and show how hybrid datasets can improve peptide and protein identification by combining the speed of the ion trap with the mass accuracy of the FTICR, similar to using a hybrid ion trap-FTICR instrument. We also show that the high resolving power of FTICR can improve precision and linear dynamic range in quantitative proteomics. The alignment software, msalign, is freely available as open source.
Resumo:
Fermentation properties of oligosaccharides derived from orange peel pectin were assessed in mixed fecal bacterial culture. The orange peel oligosaccharide fraction contained glucose in addition to rhamnogalacturonan and xylogalacturonan pectic oligosaccharides. Twenty-four-hour, temperature- and pH-controlled, stirred anaerobic fecal batch cultures were used to determine the effects that oligosaccharides derived from orange products had on the composition of the fecal microbiota. The effects were measured through fluorescent in situ hybridization to determine changes in bacterial populations, fermentation end products were analyzed by high-performance liquid chromatography to assess short-chain fatty acid concentrations, and subsequently, a prebiotic index (PI) was determined. Pectic oligosaccharides (POS) were able to increase the bifidobacterial and Eubacterium rectale numbers, albeit resulting in a lower prebiotic index than that from fructo-oligosaccharide metabolism. Orange albedo maintained the growth of most bacterial populations and gave a PI similar to that of soluble starch. Fermentation of POS resulted in an increase in the Eubacterium rectale numbers and concomitantly increased butyrate production. In conclusion, this study has shown that POS can have a beneficial effect on the fecal microflora; however, a classical prebiotic effect was not found. An increase in the Eubacterium rectale population was found, and butyrate levels increased, which is of potential benefit to the host.
Determination of digesta flow entering the omasal canal of dairy cows using different marker systems
Resumo:
Four studies were conducted to compare the effect of four indigestible markers (LiCoEDTA, Yb-acetate, Cr-mordanted straw and indigestible neutral-detergent fibre (INDF)) and three marker systems on the flow of digesta entering the omasal canal of lactating dairy cows. Samples of digesta aspirated from the omasal canal were pooled and separated using filtration and high-speed centrifugation into three fractions defined as the liquid phase, small particulate and large particulate matter. Co was primarily associated with the liquid phase, Yb was concentrated in small particulate matter, whilst Cr and INDF were associated with large particles. Digesta flow was calculated based on single markers or using the reconstitution system based on combinations of two (Co + Yb, Co + Cr and Co + INDF) or three markers (Co + Yb + Cr and Co + Yb + INDF). Use of single markers resulted in large differences between estimates of organic matter (OM) flow entering the omasal canal suggesting that samples were not representative of true digesta. Digesta appeared to consist of at least three phases that tended to separate during sampling. OM was concentrated in particulate matter, whilst the liquid phase consisted mainly of volatile fatty acids and inorganic matter. Yb was intimately associated with nitrogenous compounds, whereas Cr and INDF were concentrated in fibrous material. Current data indicated that marker systems based on Yb in combination with Cr or INDF are required for the accurate determination of OM, N and neutral-detergent fibre flow. In cases where the flow of water-soluble nutrients entering the omasal canal is also required, the marker system should also include Co.
Resumo:
A rapid, sensitive and specific method for quantifying ciprofibrate in human plasma using bezafibrate as the internal standard (IS) is described. The sample was acidified prior extraction with formic acid (88%). The analyte and the IS were extracted from plasma by liquid-liquid extraction using an organic solvent (diethyl ether/dichloromethane 70/30 (v/v)). The extracts were analyzed by high performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-MS/MS). Chromatography was performed using Genesis C18 4 mu m analytical column (4.6 x 150 mm i.d.) and a mobile phase consisting of acetonitrile/water (70/30, v/v) and 1 mM acetic acid. The method had a chromatographic run time of 3.4 min and a linear calibration curve over the range 0.1-60 mu g/mL (r > 0.99). The limit of quantification was 0.1 mu g/mL. The intra- and interday accuracy and precision values of the assay were less than 13.5%. The stability tests indicated no significant degradation. The recovery of ciprofibrate was 81.2%, 73.3% and 76.2% for the 0.3, 5.0 and 48.0 ng/mL standard concentrations, respectively. For ciprofibrate, the optimized parameters of the declustering potential, collision energy and collision exit potential were -51 V, -16 eV and -5 V, respectively. The method was also validated without the use of the internal standard. This HPLC-MS/MS procedure was used to assess the bioequivalence of two ciprofibrate 100 mg tablet formulations in healthy volunteers of both sexes. The following pharmacokinetic parameters were obtained from the ciprofibrate plasma concentration vs. time curves: AUC(last), AUC(0-168 h), C(max) and T(max). The geometric mean with corresponding 90% confidence interval (CI) for test/reference percent ratios were 93.80% (90% CI = 88.16-99.79%) for C(max), 98.31% (90% CI = 94.91-101.83%) for AUC(last) and 97.67% (90% CI = 94.45-101.01%) for AUC(0-168 h). Since the 90% Cl for AUC(last), AUC(0-168 h) and C(max) ratios were within the 80-125% interval proposed by the US FDA, it was concluded that ciprofibrate (Lipless (R) 100 mg tablet) formulation manufactured by Biolab Sanus Farmaceutica Ltda. is bioequivalent to the Oroxadin (R) (100 mg tablet) formulation for both the rate and the extent of absorption. (C) 2011 Published by Elsevier B.V.
Resumo:
This paper describes the development and application of an RP HPLC method using a C(18) monolithic stationary phase for the separation and quantification of extra- and intracellular amino acids in a batch cultivation of the marine alga Tetraselmis gracilis. Fluorimetric detection was made after separation of the o-phthaldialdehyde 2-mercaptoethanol (OPA-2MCE) derivatives using a binary gradient elution. Separation of 19 amino acids was achieved with resolution >1.5 in about 39 min at a flow rate of 1.5 mL/min. RSD of analyses in seawater medium ranged from 0.36% for Orn (0.50 mu mol/L) to 12% for Ile (0.10 mu mol/L). The main constituents of the intracellular dissolved free amino acids (DFAAs) in the exponential growth phase were arginine (Arg), asparagine (Asn), alanine (Ala), aspartic acid (Asp), glutamic acid (Glu), serine (Ser), glycine (Gly), glutamine (Gln), and leucine (Leu). The major amino acids excreted to the media were valine (Val), Ala, Ser, and Gly. The monolithic phase facilitates the analysis by shortening the separation time and saving solvents and instrumentation costs (indeed conventional HPLC instrumentation can be used, running at lower pressures than those ones used with packed particle columns).
Resumo:
Introduction - A large number of natural and synthetic compounds having butenolides as a core unit have been described and many of them display a wide range of biological activities. Butenolides from P. malacophyllum have presented potential antifungal activities but no specific, fast, and precise method has been developed for their determination. Objective - To develop a methodology based on micellar electrokinetic chromatography to determine butenolides in Piper species. Methodology - The extracts were analysed in an uncoated fused-silica capillaries and for the micellar system 20 mmol/L SDS, 20% (v/v) acetonitrile (ACN) and 10 mmol/L STB aqueous buffer at pH 9.2 were used. The method was validated for precision, linearity, limit of detection (LOD) and limit of quantitation (LOQ) and the standard deviations were determined from the standard errors estimated by the regression line. Results - A micellar electrokinetic chromatography (MEKC) method for determination of butenolides in extracts gave full resolution for 1 and 2. The analytical curve in the range 10.0-50.0 mu g/mL (r(2) = 0.999) provided LOD and LOQ for 1 and 2 of 2.1/6.3 and 1.1/3.5 mu g/mL, respectively. The RSD for migration times were 0.12 and 1.0% for peak area ratios with 100.0 +/- 1.4% of recovery. Conclusions - A novel high-performance MEKC method developed for the analysis of butenolides 1 and 2 in leaf extracts of P. malacophyllum allowed their quantitative determined within an analysis time shorter than 5 min and the results indicated CE to be a feasible analytical technique for the quantitative determination of butenolides in Piper extracts. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
In this work, the separation of nine phenolic acids (benzoic, caffeic, chlorogenic, p-coumaric, ferulic, gallic, protocatechuic, syringic, and vanillic acid) was approached by a 32 factorial design in electrolytes consisting of sodium tetraborate buffer(STB) in the concentration range of 10-50 mmol L(-1) and methanol in the volume percentage of 5-20%. Derringer`s desirability functions combined globally were tested as response functions. An optimal electrolyte composed by 50 mmol L(-1) tetraborate buffer at pH 9.2, and 7.5% (v/v) methanol allowed baseline resolution of all phenolic acids under investigation in less than 15 min. In order to promote sample clean up, to preconcentrate the phenolic fraction and to release esterified phenolic acids from the fruit matrix, elaborate liquid-liquid extraction procedures followed by alkaline hydrolysis were performed. The proposed methodology was fully validated (linearity from 10.0 to 100 mu g mL(-1), R(2) > 0.999: LOD and LOQ from 1.32 to 3.80 mu g mL(-1) and from 4.01 to 11.5 mu g mL(-1), respectively; intra-day precision better than 2.8% CV for migration time and 5.4% CV for peak area; inter-day precision better than 4.8% CV for migration time and 4.8-11% CV for peak area: recoveries from 81% to 115%) and applied successfully to the evaluation of phenolic contents of abiu-roxo (Chrysophyllum caimito), wild mulberry growing in Brazil (Morus nigra L.) and tree tomato (Cyphomandra betacea). Values in the range of 1.50-47.3 mu g g(-1) were found, with smaller amounts occurring as free phenolic acids. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
in this work, a simple method for the simultaneous determination of cocaine (COC) and five COC metabolites (benzoylecgonine, cocaethylene (CET), anhydroecgonine, anhydroecgonine methyl ester and ecgonine methyl ester) in human urine using CE coupled to MS via electrospray ionization (CE-ESI-MS) was developed and validated. Formic acid at 1 mol/L concentration was used as electrolyte whereas formic acid at 0.05 mol/L concentration in 1:1 methanol:water composed the coaxial sheath liquid at the ESI nozzle. The developed method presented good linearity in the dynamic range from 250 ng/mL to 5000 ng/mL (coefficient of determination greater than 0.98 for all compounds). LODs (signal-to-noise ratio of 3) were 100 ng/mL for COC and CET and 250 ng/mL for the other studied metabolites whereas LOQ`s (signal-to-noise ratio of 10) were 250 ng/mL for COC and CET and 500 ng/mL for all other compounds. Intra-day precision and recovery tests estimated at three different concentration levels (500, 1500 and 5000 ng/mL) provided RSD lower than 10% (except anhydroecgonine, 18% RSD) and recoveries from 83-109% for all analytes. The method was successfully applied to real cases. For the positive urine samples, the presence of COC and its` metabolites was further confirmed by MS/MS experiments.
Resumo:
This paper describes the development of a sequential injection chromatography (SIC) procedure for separation and quantification of the herbicides simazine, atrazine, and propazine exploring the low backpressure of a 2.5 cm long monolithic C(18) column. The separation of the three compounds was achieved in less than 90 s with resolution > 1.5 using a mobile phase composed by ACN/1.25 mmol/L acetate buffer (pH 4.5) at the volumetric ratio of 35:65 and flow rate of 40 mu L/s. Detection was made at 223 nm using a flow cell with 40 mm of optical path length. The LOD was 10 mu g/L for the three triazines and the quantification limits were of 30 mu g/L for simazine and propazine and 40 mu g/L for atrazine. The sampling frequency is 27 samples per hour, consuming 1.1 mL of ACN per analysis. The proposed methodology was applied to spiked water samples and no statistically significant differences were observed in comparison to a conventional HPLC-UV method. The major metabolites of atrazine and other herbicides did not interfere in the analysis, being eluted from the column either together with the unretained peak, or at retention times well-resolved from the studied compounds.
Resumo:
The aim of this study was to develop a fast capillary electrophoresis method for the determination of benzoate and sorbate ions in commercial beverages. In the method development the pH and constituents of the background electrolyte were selected using the effective mobility versus pH curves. As the high resolution obtained experimentally for sorbate and benzoate in the studies presented in the literature is not in agreement with that expected from the ionic mobility values published, a procedure to determine these values was carried out. The salicylate ion was used as the internal standard. The background electrolyte was composed of 25 mmol L(-1) tris(hydroxymethyl)aminomethane and 12.5 mmol L(-1) 2-hydroxyisobutyric acid, atpH 8.1.Separation was conducted in a fused-silica capillary(32 cm total length and 8.5 cm effective length, 50 mu m I.D.), with short-end injection configuration and direct UV detection at 200 nm for benzoate and salicylate and 254 nm for sorbate ions. The run time was only 28 s. A few figures of merit of the proposed method include: good linearity (R(2) > 0.999), limit of detection of 0.9 and 0.3 mg L(-1) for benzoate and sorbate, respectively, inter-day precision better than 2.7% (n =9) and recovery in the range 97.9-105%. Beverage samples were prepared by simple dilution with deionized water (1:11, v/v). Concentrations in the range of 197-401 mg L(-1) for benzoate and 28-144 mg L(-1) for sorbate were found in soft drinks and tea. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the development and evaluation of a sequential injection method to automate the determination of methyl parathion by square wave adsorptive cathodic stripping voltammetry exploiting the concept of monosegmented flow analysis to perform in-line sample conditioning and standard addition. Accumulation and stripping steps are made in the sample medium conditioned with 40 mmol L-1 Britton-Robinson buffer (pH 10) in 0.25 mol L-1 NaNO3. The homogenized mixture is injected at a flow rate of 10 mu Ls(-1) toward the flow cell, which is adapted to the capillary of a hanging drop mercury electrode. After a suitable deposition time, the flow is stopped and the potential is scanned from -0.3 to -1.0 V versus Ag/AgCl at frequency of 250 Hz and pulse height of 25 mV The linear dynamic range is observed for methyl parathion concentrations between 0.010 and 0.50 mgL(-1), with detection and quantification limits of 2 and 7 mu gL(-1), respectively. The sampling throughput is 25 h(-1) if the in line standard addition and sample conditioning protocols are followed, but this frequency can be increased up to 61 h(-1) if the sample is conditioned off-line and quantified using an external calibration curve. The method was applied for determination of methyl parathion in spiked water samples and the accuracy was evaluated either by comparison to high performance liquid chromatography with UV detection, or by the recovery percentages. Although no evidences of statistically significant differences were observed between the expected and obtained concentrations, because of the susceptibility of the method to interference by other pesticides (e.g., parathion, dichlorvos) and natural organic matter (e.g., fulvic and humic acids), isolation of the analyte may be required when more complex sample matrices are encountered. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The burning of organic residues and wastes in furnaces of cement industries has been an attractive and lucrative approach to eliminate stocks of these pollutants. There is a potential risk for producing PAH in the workplace of industries burning organic wastes, so that highly sensitive analytical methods are needed for monitoring the air quality of these environments. An official method for determination of PAH is based on liquid chromatography with fluorescence detection at fixed excitation and emission wavelengths. We demonstrate that a suitable choice of these wavelengths, which are changed during the chromatographic run, significantly improves the detectability of PAH in atmosphere and particulate matter collected in cement industries.