818 resultados para LDPC, CUDA, GPGPU, computing, GPU, DVB, S2, SDR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different classes of constitutive models have been proposed to capture the time-dependent behaviour of soft soil (creep, stress relaxation, rate dependency). This paper critically reviews many of the models developed based on understanding of the time dependent stress-strain-stress rate-strain rate behaviour of soils and viscoplasticity in terms of their strengths and weaknesses. Some discussion is also made on the numerical implementation aspects of these models. Typical findings from numerical analyses of geotechnical structures constructed on soft soils are also discussed. The general elastic viscoplastic (EVP) models can roughly be divided into two categories: models based on the concept of overstress and models based on non-stationary flow surface theory. Although general in structure, both categories have their own strengths and shortcomings. This review indicates that EVP analysis is yet to be vastly used by the geotechnical engineers, apparently due to the mathematical complication involved in the formulation of the constitutive models, unconvincing benefit in terms of the accuracy of performance prediction, requirement of additional soil parameter(s), difficulties in determining them, and the necessity of excessive computing resources and time. © 2013 Taylor & Francis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a general scheme for sequential one-way quantum computation where static systems with long-living quantum coherence (memories) interact with moving systems that may possess very short coherence times. Both the generation of the cluster state needed for the computation and its consumption by measurements are carried out simultaneously. As a consequence, effective clusters of one spatial dimension fewer than in the standard approach are sufficient for computation. In particular, universal computation requires only a one-dimensional array of memories. The scheme applies to discrete-variable systems of any dimension as well as to continuous-variable ones, and both are treated equivalently under the light of local complementation of graphs. In this way our formalism introduces a general framework that encompasses and generalizes in a unified manner some previous system-dependent proposals. The procedure is intrinsically well suited for implementations with atom-photon interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extension of approximate computing, significance-based computing exploits applications' inherent error resiliency and offers a new structural paradigm that strategically relaxes full computational precision to provide significant energy savings with minimal performance degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No Abstract available

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of the POBICOS project is a platform that facilitates the development and deployment of pervasive computing applications destined for networked, cooperating objects. POBICOS object communities are heterogeneous in terms of the sensing, actuating, and computing resources contributed by each object. Moreover, it is assumed that an object community is formed without any master plan; for example, it may emerge as a by-product of acquiring everyday, POBICOS-enabled objects by a household. As a result, the target object community is, at least partially, unknown to the application programmer, and so a POBICOS application should be able to deliver its functionality on top of diverse object communities (we call this opportunistic computing). The POBICOS platform includes a middleware offering a programming model for opportunistic computing, as well as development and monitoring tools. This paper briefly describes the tools produced in the first phase of the project. Also, the stakeholders using these tools are identified, and a development process for both the middleware and applications is presented. © 2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an end-user model for a domestic pervasive computing platform formed by regular home objects. The platform does not rely on pre-planned infrastructure; instead, it exploits objects that are already available in the home and exposes their joint sensing, actuating and computing capabilities to home automation applications. We advocate an incremental process of the platform formation and introduce tangible, object-like artifacts for representing important platform functions. One of those artifacts, the application pill, is a tiny object with a minimal user interface, used to carry the application, as well as to start and stop its execution and provide hints about its operational status. We also emphasize streamlining the user's interaction with the platform. The user engages any UI-capable object of his choice to configure applications, while applications issue notifications and alerts exploiting whichever available objects can be used for that purpose. Finally, the paper briefly describes an actual implementation of the presented end-user model. © (2010) by International Academy, Research, and Industry Association (IARIA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate execution is a viable technique for energy-con\-strained environments, provided that applications have the mechanisms to produce outputs of the highest possible quality within the given energy budget.
We introduce a framework for energy-constrained execution with controlled and graceful quality loss. A simple programming model allows users to express the relative importance of computations for the quality of the end result, as well as minimum quality requirements. The significance-aware runtime system uses an application-specific analytical energy model to identify the degree of concurrency and approximation that maximizes quality while meeting user-specified energy constraints. Evaluation on a dual-socket 8-core server shows that the proposed
framework predicts the optimal configuration with high accuracy, enabling energy-constrained executions that result in significantly higher quality compared to loop perforation, a compiler approximation technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a task-based programming model and runtime system that exploit the observation that not all parts of a program are equally significant for the accuracy of the end-result, in order to trade off the quality of program outputs for increased energy-efficiency. This is done in a structured and flexible way, allowing for easy exploitation of different points in the quality/energy space, without adversely affecting application performance. The runtime system can apply a number of different policies to decide whether it will execute less-significant tasks accurately or approximately.

The experimental evaluation indicates that our system can achieve an energy reduction of up to 83% compared with a fully accurate execution and up to 35% compared with an approximate version employing loop perforation. At the same time, our approach always results in graceful quality degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the computation of lower/upper expectations that must cohere with a collection of probabilistic assessments and a collection of judgements of epistemic independence. New algorithms, based on multilinear programming, are presented, both for independence among events and among random variables. Separation properties of graphical models are also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a new parallel pattern derived from a specific application domain and show how it turns out to have application beyond its domain of origin. The pool evolution pattern models the parallel evolution of a population subject to mutations and evolving in such a way that a given fitness function is optimized. The pattern has been demonstrated to be suitable for capturing and modeling the parallel patterns underpinning various evolutionary algorithms, as well as other parallel patterns typical of symbolic computation. In this paper we introduce the pattern, we discuss its implementation on modern multi/many core architectures and finally present experimental results obtained with FastFlow and Erlang implementations to assess its feasibility and scalability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embedded memories account for a large fraction of the overall silicon area and power consumption in modern SoC(s). While embedded memories are typically realized with SRAM, alternative solutions, such as embedded dynamic memories (eDRAM), can provide higher density and/or reduced power consumption. One major challenge that impedes the widespread adoption of eDRAM is that they require frequent refreshes potentially reducing the availability of the memory in periods of high activity and also consuming significant amount of power due to such frequent refreshes. Reducing the refresh rate while on one hand can reduce the power overhead, if not performed in a timely manner, can cause some cells to lose their content potentially resulting in memory errors. In this paper, we consider extending the refresh period of gain-cell based dynamic memories beyond the worst-case point of failure, assuming that the resulting errors can be tolerated when the use-cases are in the domain of inherently error-resilient applications. For example, we observe that for various data mining applications, a large number of memory failures can be accepted with tolerable imprecision in output quality. In particular, our results indicate that by allowing as many as 177 errors in a 16 kB memory, the maximum loss in output quality is 11%. We use this failure limit to study the impact of relaxing reliability constraints on memory availability and retention power for different technologies.