886 resultados para LC Classification System


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing importance and influence of new resources connected to the power systems has caused many changes in their operation. Environmental policies and several well know advantages have been made renewable based energy resources largely disseminated. These resources, including Distributed Generation (DG), are being connected to lower voltage levels where Demand Response (DR) must be considered too. These changes increase the complexity of the system operation due to both new operational constraints and amounts of data to be processed. Virtual Power Players (VPP) are entities able to manage these resources. Addressing these issues, this paper proposes a methodology to support VPP actions when these act as a Curtailment Service Provider (CSP) that provides DR capacity to a DR program declared by the Independent System Operator (ISO) or by the VPP itself. The amount of DR capacity that the CSP can assure is determined using data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 33 bus distribution network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many current e-commerce systems provide personalization when their content is shown to users. In this sense, recommender systems make personalized suggestions and provide information of items available in the system. Nowadays, there is a vast amount of methods, including data mining techniques that can be employed for personalization in recommender systems. However, these methods are still quite vulnerable to some limitations and shortcomings related to recommender environment. In order to deal with some of them, in this work we implement a recommendation methodology in a recommender system for tourism, where classification based on association is applied. Classification based on association methods, also named associative classification methods, consist of an alternative data mining technique, which combines concepts from classification and association in order to allow association rules to be employed in a prediction context. The proposed methodology was evaluated in some case studies, where we could verify that it is able to shorten limitations presented in recommender systems and to enhance recommendation quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an integrated system that helps both retail companies and electricity consumers on the definition of the best retail contracts and tariffs. This integrated system is composed by a Decision Support System (DSS) based on a Consumer Characterization Framework (CCF). The CCF is based on data mining techniques, applied to obtain useful knowledge about electricity consumers from large amounts of consumption data. This knowledge is acquired following an innovative and systematic approach able to identify different consumers’ classes, represented by a load profile, and its characterization using decision trees. The framework generates inputs to use in the knowledge base and in the database of the DSS. The rule sets derived from the decision trees are integrated in the knowledge base of the DSS. The load profiles together with the information about contracts and electricity prices form the database of the DSS. This DSS is able to perform the classification of different consumers, present its load profile and test different electricity tariffs and contracts. The final outputs of the DSS are a comparative economic analysis between different contracts and advice about the most economic contract to each consumer class. The presentation of the DSS is completed with an application example using a real data base of consumers from the Portuguese distribution company.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water-based cellulose cholesteric liquid crystalline phases at rest can undergo structural changes induced by shear flow. This reflects on the deuterium spectra recorded when the system is investigated by rheo-nuclear magnetic resonance (rheo-NMR) techniques. In this work, the model system hydroxypropylcellulose (HPC)+water is revisited using rheo-NMR to clarify unsettled points regarding its behavior under shear and in relaxation. The NMR spectra allow the identification of five different stable ordering states, within shear and relaxation, which are well integrated in a mesoscopic picture of the system's structural evolution under shear and relaxation. This picture emerging from the large body of studies available for this system by other experimental techniques, accounts well for the NMR data and is in good agreement with the three distinct regions of steady shear flow recognized for some lyotropic LC polymers. Shear rates in between 0.1 and 1.0 s(-1) where investigated using a Taylor-Couette flow and deuterated water was used as solvent for the deuterium NMR (DNMR) analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a proposal for an automatic vehicle detection and classification (AVDC) system. The proposed AVDC should classify vehicles accordingly to the Portuguese legislation (vehicle height over the first axel and number of axels), and should also support profile based classification. The AVDC should also fulfill the needs of the Portuguese motorway operator, Brisa. For the classification based on the profile we propose:he use of Eigenprofiles, a technique based on Principal Components Analysis. The system should also support multi-lane free flow for future integration in this kind of environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last few years, the number of systems and devices that use voice based interaction has grown significantly. For a continued use of these systems, the interface must be reliable and pleasant in order to provide an optimal user experience. However there are currently very few studies that try to evaluate how pleasant is a voice from a perceptual point of view when the final application is a speech based interface. In this paper we present an objective definition for voice pleasantness based on the composition of a representative feature subset and a new automatic voice pleasantness classification and intensity estimation system. Our study is based on a database composed by European Portuguese female voices but the methodology can be extended to male voices or to other languages. In the objective performance evaluation the system achieved a 9.1% error rate for voice pleasantness classification and a 15.7% error rate for voice pleasantness intensity estimation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In practice the robotic manipulators present some degree of unwanted vibrations. The advent of lightweight arm manipulators, mainly in the aerospace industry, where weight is an important issue, leads to the problem of intense vibrations. On the other hand, robots interacting with the environment often generate impacts that propagate through the mechanical structure and produce also vibrations. In order to analyze these phenomena a robot signal acquisition system was developed. The manipulator motion produces vibrations, either from the structural modes or from endeffector impacts. The instrumentation system acquires signals from several sensors that capture the joint positions, mass accelerations, forces and moments, and electrical currents in the motors. Afterwards, an analysis package, running off-line, reads the data recorded by the acquisition system and extracts the signal characteristics. Due to the multiplicity of sensors, the data obtained can be redundant because the same type of information may be seen by two or more sensors. Because of the price of the sensors, this aspect can be considered in order to reduce the cost of the system. On the other hand, the placement of the sensors is an important issue in order to obtain the suitable signals of the vibration phenomenon. Moreover, the study of these issues can help in the design optimization of the acquisition system. In this line of thought a sensor classification scheme is presented. Several authors have addressed the subject of the sensor classification scheme. White (White, 1987) presents a flexible and comprehensive categorizing scheme that is useful for describing and comparing sensors. The author organizes the sensors according to several aspects: measurands, technological aspects, detection means, conversion phenomena, sensor materials and fields of application. Michahelles and Schiele (Michahelles & Schiele, 2003) systematize the use of sensor technology. They identified several dimensions of sensing that represent the sensing goals for physical interaction. A conceptual framework is introduced that allows categorizing existing sensors and evaluates their utility in various applications. This framework not only guides application designers for choosing meaningful sensor subsets, but also can inspire new systems and leads to the evaluation of existing applications. Today’s technology offers a wide variety of sensors. In order to use all the data from the diversity of sensors a framework of integration is needed. Sensor fusion, fuzzy logic, and neural networks are often mentioned when dealing with problem of combing information from several sensors to get a more general picture of a given situation. The study of data fusion has been receiving considerable attention (Esteban et al., 2005; Luo & Kay, 1990). A survey of the state of the art in sensor fusion for robotics can be found in (Hackett & Shah, 1990). Henderson and Shilcrat (Henderson & Shilcrat, 1984) introduced the concept of logic sensor that defines an abstract specification of the sensors to integrate in a multisensor system. The recent developments of micro electro mechanical sensors (MEMS) with unwired communication capabilities allow a sensor network with interesting capacity. This technology was applied in several applications (Arampatzis & Manesis, 2005), including robotics. Cheekiralla and Engels (Cheekiralla & Engels, 2005) propose a classification of the unwired sensor networks according to its functionalities and properties. This paper presents a development of a sensor classification scheme based on the frequency spectrum of the signals and on a statistical metrics. Bearing these ideas in mind, this paper is organized as follows. Section 2 describes briefly the robotic system enhanced with the instrumentation setup. Section 3 presents the experimental results. Finally, section 4 draws the main conclusions and points out future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Behavioral biometrics is one of the areas with growing interest within the biosignal research community. A recent trend in the field is ECG-based biometrics, where electrocardiographic (ECG) signals are used as input to the biometric system. Previous work has shown this to be a promising trait, with the potential to serve as a good complement to other existing, and already more established modalities, due to its intrinsic characteristics. In this paper, we propose a system for ECG biometrics centered on signals acquired at the subject's hand. Our work is based on a previously developed custom, non-intrusive sensing apparatus for data acquisition at the hands, and involved the pre-processing of the ECG signals, and evaluation of two classification approaches targeted at real-time or near real-time applications. Preliminary results show that this system leads to competitive results both for authentication and identification, and further validate the potential of ECG signals as a complementary modality in the toolbox of the biometric system designer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation for a Masters Degree in Computer and Electronic Engineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyzes the signals captured during impacts and vibrations of a mechanical manipulator. The Fourier Transform of eighteen different signals are calculated and approximated by trendlines based on a power law formula. A sensor classification scheme based on the frequency spectrum behavior is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quality of life is a concept influenced by social, economic, psychological, spiritual or medical state factors. More specifically, the perceived quality of an individual's daily life is an assessment of their well-being or lack of it. In this context, information technologies may help on the management of services for healthcare of chronic patients such as estimating the patient quality of life and helping the medical staff to take appropriate measures to increase each patient quality of life. This paper describes a Quality of Life estimation system developed using information technologies and the application of data mining algorithms to access the information of clinical data of patients with cancer from Otorhinolaryngology and Head and Neck services of an oncology institution. The system was evaluated with a sample composed of 3013 patients. The results achieved show that there are variables that may be significant predictors for the Quality of Life of the patient: years of smoking (p value 0.049) and size of the tumor (p value < 0.001). In order to assign the variables to the classification of the quality of life the best accuracy was obtained by applying the John Platt's sequential minimal optimization algorithm for training a support vector classifier. In conclusion data mining techniques allow having access to patients additional information helping the physicians to be able to know the quality of life and produce a well-informed clinical decision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assessing the safety of existing timber structures is of paramount importance for taking reliable decisions on repair actions and their extent. The results obtained through semi-probabilistic methods are unrealistic, as the partial safety factors present in codes are calibrated considering the uncertainty present in new structures. In order to overcome these limitations, and also to include the effects of decay in the safety analysis, probabilistic methods, based on Monte-Carlo simulation are applied here to assess the safety of existing timber structures. In particular, the impact of decay on structural safety is analyzed and discussed, using a simple structural model, similar to that used for current semi-probabilistic analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the current economic situation of the Portuguese municipalities, it is necessary to identify the priority investments in order to achieve a more efficient financial management. The classification of the road network of the municipality according to the occurrence of traffic accidents is fundamental to set priorities for road interventions. This paper presents a model for road network classification based on traffic accidents integrated in a geographic information system. Its practical application was developed through a case study in the municipality of Barcelos. An equation was defined to obtain a road safety index through the combination of the following indicators: severity, property damage only and accident costs. In addition to the road network classification, the application of the model allows to analyze the spatial coverage of accidents in order to determine the centrality and dispersion of the locations with the highest incidence of road accidents. This analysis can be further refined according to the nature of the accidents namely in collision, runoff and pedestrian crashes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vision-based hand gesture recognition is an area of active current research in computer vision and machine learning. Being a natural way of human interaction, it is an area where many researchers are working on, with the goal of making human computer interaction (HCI) easier and natural, without the need for any extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them, for example, to convey information. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. Hand gestures are a powerful human communication modality with lots of potential applications and in this context we have sign language recognition, the communication method of deaf people. Sign lan- guages are not standard and universal and the grammars differ from country to coun- try. In this paper, a real-time system able to interpret the Portuguese Sign Language is presented and described. Experiments showed that the system was able to reliably recognize the vowels in real-time, with an accuracy of 99.4% with one dataset of fea- tures and an accuracy of 99.6% with a second dataset of features. Although the im- plemented solution was only trained to recognize the vowels, it is easily extended to recognize the rest of the alphabet, being a solid foundation for the development of any vision-based sign language recognition user interface system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Lecture notes in computer science series, ISSN 0302-9743, vol. 9273"