864 resultados para Ion absorption
Resumo:
Nitrate is the main form of nitrogen associated with water contamination; the high mobility of this species in soil justifies the concern regarding nitrogen management in agricultural soils. Therefore, the objective of this research was to assess the effect of companion cation on nitrate displacement, by analyzing nitrate transport parameters through Breakthrough Curves (BTCs) and their settings made by numerical model (STANMOD). The experiment was carried out in the Soil and Water Quality Laboratory of the Department of Biosystems Engineering, "Luiz de Queiroz" College of Agriculture in Piracicaba (SP), Brazil. It was performed using saturated soil columns in steady-state flow condition, in which two different sources of inorganic nitrate Ca(NO3)2 and NH4NO3 were applied at a concentration of 50 mg L-1 NO3-. Each column was filled with either a Red-Yellow Oxisol (S1) or an Alfisol (S2). Results are indicative that the companion ion had no effect on nitrate displacement. However, nitrate transport was influenced by soil texture, particle aggregation, solution speed in soil and organic matter presence. Nitrate mobility was higher in the Alfisol (S2).
Resumo:
The main advantage of organic electronics over the more widespread inorganic counterparts lies not in the electrical performance, but rather in the solution processability that opens up for low-cost flexible electronics (e.g. displays, sensors and smart tags) fabricated by using printing techniques. Replacing the commonly used laboratory-scale fabrication techniques with mass-printing techniques is, however, truly challenging, especially when low-voltage operation is required. In this thesis it is, nevertheless, demonstrated that low-voltage organic transistors can be fully printed with a similar performance to that of transistors made by laboratory scale techniques. The use of an ion-modulated type of organic field effect transistor (OFET) not only enabled low-voltage operation and printability, but was also found to result in low sensitivity to the surface roughness of the substrate. This allows not only the use of low-cost plastic substrates, but even the use of paper as a substrate. However, while absorption into the porous paper surface is advantageous in a graphical printing process, by reducing the spreading and the coffee-stain effect and by improving the adhesion, it provides great challenges when applying thin electrically active layers. In spite of these difficulties we were able to demonstrate the first low-voltage OFET to be fabricated on paper. We have also shown that low-cost incandescent lamps can be used for sintering printed metal-nanoparticles, and that the process was especially suitable on paper and compatible with a roll-to-roll manufacturing process.
Resumo:
Att övervaka förekomsten av giftiga komponenter i naturliga vattendrag är nödvändigt för människans välmående. Eftersom halten av föroreningar i naturens ekosystem bör hållas möjligast låg, pågår en ständig jakt efter kemiska analysmetoder med allt lägre detektionsgränser. I dagens läge görs miljöanalyser med dyr och sofistikerad instrumentering som kräver mycket underhåll. Jonselektiva elektroder har flera goda egenskaper som t.ex. bärbarhet, låg energiförbrukning, och dessutom är de relativt kostnadseffektiva. Att använda jonselektiva elektroder vid miljöanalyser är möjligt om deras känslighetsområde kan utvidgas genom att sänka deras detektionsgränser. För att sänka detektionsgränsen för Pb(II)-selektiva elektroder undersöktes olika typer av jonselektiva membran som baserades på polyakrylat-kopolymerer, PVC och PbS/Ag2S. Fast-fas elektroder med membran av PbS/Ag2S är i allmänhet enklare och mer robusta än konventionella elektroder vid spårämnesanalys av joniska föroreningar. Fast-fas elektrodernas detektionsgräns sänktes i detta arbete med en nyutvecklad galvanostatisk polariseringsmetod och de kunde sedan framgångsrikt användas för kvantitativa bestämningar av bly(II)-halter i miljöprov som hade samlats in i den finska skärgården nära tidigare industriområden. Analysresultaten som erhölls med jonselektiva elektroder bekräftades med andra analytiska metoder. Att sänka detektionsgränsen m.hj.a. den nyutvecklade polariseringsmetoden möjliggör bestämning av låga och ultra-låga blyhalter som inte kunde nås med klassisk potentiometri. Den verkliga fördelen med att använda dessa blyselektiva elektroder är möjligheten att utföra mätningar i obehandlade miljöprov trots närvaron av fasta partiklar vilket inte är möjligt att göra med andra analysmetoder. Jag väntar mig att den nyutvecklade polariseringsmetoden kommer att sätta en trend i spårämnesanalys med jonselektiva elektroder.
Resumo:
Ion exchange membranes are indispensable for the separation of ionic species. They can discriminate between anions and cations depending on the type of fixed ionic group present in the membrane. These conventional ion exchange membranes (CIX) have exceptional ionic conductivity, which is advantageous in various electromembrane separation processes such as electrodialysis, electrodeionisation and electrochemical ion exchange. The main disadvantage of CIX membranes is their high electrical resistance owing to the fact that the membranes are electronically non conductive. An alternative can be electroactive ion exchange membranes, which are ionically and electronically conducting. Polypyrrole (PPy) is a type of electroactive ion exchange material as well as a commonly known conducting polymer. When PPy membranes are repeatedly reduced and oxidised, ions are pumped through the membrane. The main aim of this thesis was to develop electroactive cation transport membranes based on PPy for the selective transport of divalent cations. Membranes developed composed of PPy films deposited on commercially available support materials. To carry out this study, cation exchange membranes based on PPy doped with immobile anions were prepared. Two types of dopant anions known to interact with divalent metal ions were considered, namely 4-sulphonic calix[6]arene (C6S) and carboxylated multiwalled carbon nanotubes (CNT). The transport of ions across membranes containing PPy doped with polystyrene sulphonate (PSS) and PPy doped with para-toluene sulphonate (pTS) was also studied in order to understand the nature of ion transport and permeability across PPy(CNT) and PPy(C6S) membranes. In the course of these studies, membrane characterisation was performed using electrochemical quartz crystal microbalance (EQCM) and scanning electron microscopy (SEM). Permeability of the membranes towards divalent cations was explored using a two compartment transport cell. EQCM results demonstrated that the ion exchange behaviour of polypyrrole is dependent on a number of factors including the type of dopant anion present, the type of ions present in the surrounding medium, the scan rate used during the experiment and the previous history of the polymer film. The morphology of PPy films was found to change when the dopant anion was varied and even when the thickness of the film was altered in some cases. In nearly all cases the permeability of the membranes towards metal ions followed the order K+ > Ca2+ > Mn2+. The one exception was PPy(C6S), for which the permeability followed the order Ca2+ ≥ K+ > Mn2+ > Co2+ > Cr3+. The above permeability sequences show a strong dependence on the size of the metal ions with metal ions having the smallest hydrated radii exhibiting the highest flux. Another factor that affected the permeability towards metal ions was the thickness of the PPy films. Films with the least thickness showed higher metal ion fluxes. Electrochemical control over ion transport across PPy(CNT) membrane was obtained when films composed of the latter were deposited on track-etched Nucleopore® membranes as support material. In contrast, the flux of ions across the same film was concentration gradient dependent when the polymer was deposited on polyvinylidene difluoride membranes as support material. However, electrochemical control over metal ion transport was achieved with a bilayer type of PPy film consisting of PPy(pTS)/PPy(CNT), irrespective of the type of support material. In the course of studying macroscopic charge balance during transport experiments performed using a two compartment transport cell, it was observed that PPy films were non-permselective. A clear correlation between the change in pH in the receiving solution and the ions transported across the membrane was observed. A decrease in solution pH was detected when the polymer membrane acted primarily as an anion exchanger, while an increase in pH occurred when it functioned as a cation exchanger. When there was an approximately equal flux of anions and cations across the polymer membrane, the pH in the receiving solution was in the range 6 - 8. These observations suggest that macroscopic charge balance during the transport of cations and anions across polypyrrole membranes was maintained by introduction of anions (OH-) and cations (H+) produced via electrolysis of water.
Resumo:
Chlorophenols have been classified as possible carcinogens for humans. Chlorophenols have been used as pesticides and wood preservatives. In Finland, during 1930 – 1980s, saw mills used KY-5 wood preservative that contained 2,4,6-TCP, 2,3,4,6-TeCP and PCP. Especially in Finland chlorophenols have entered the environment by leaking from contaminated grounds of old saw mills. Although chlorophenol concentrations found in environment do not cause acute concern, long term exposure can increase the risk of cancer. SPME is relatively cheap and simple sampling method, in which the sample extraction and concentration are performed in a single step. Solvents are not required in SPME. IMS is based on the detection of sample ion drift times. Based on the drift times, reduced mobilities are calculated, which are comparable despite the measurement conditions. SPME-IMS coupling has not been used earlier in the determination of chlorophenols from water samples. The scope of this work was to study, if SPME-IMS system is suitable for detecting chloro-phenols from water samples. The aim was to determine the most optimal extraction condi-tions, which were then applied to real water samples. Following detection limits were deter-mined: 2,4,6-TCP: 0.33 mg/l; 2,3,4,6-TeCP: 0.63 mg/l and PCP: 1.63 mg/l. Detection limits were high compared to the highest possible chlorophenol concentration that is allowed in Finnish drinking water, 10 μg/l. Detected concentrations from water sample differed from verified concentrations in the case of 2,3,4,6-TeCP by 4.6 % and in the case of 2,4,6-TCP by 48.4 %. Based on the results it can be said that SPME-IMS setup is suitable for preliminary analysis of mg/l chlorophenol concentrations from water samples.
Resumo:
In this thesis, the DFMA is presented and used for the purpose of having a design for a vertical transfer line that can be easily manufactured and assembled. The design of the transfer line, the major components and drawings are presented. The ease of assembly, the costs of manufacturing and differences between the use of steel structure and aluminum are compared. The ALARA principle is followed to minimize the risk of radiation exposure by the means of locating the test ion sources outside the radioactive area.
Resumo:
Potentiometric ion sensors are a very important subgroup of electrochemical sensors, very attractive for practical applications due to their small size, portability, low-energy consumption, relatively low cost and not changing the sample composition. They are investigated by the researchers from many fields of science. The continuous development of this field creates the necessity for a detailed description of sensor response and the electrochemical processes important in the practical applications of ion sensors. The aim of this thesis is to present the existing models available for the description of potentiometric ion sensors as well as their applicability and limitations. This includes the description of the diffusion potential occurring at the reference electrodes. The wide range of existing models, from most idealised phase boundary models to most general models, including migration, is discussed. This work concentrates on the advanced modelling of ion sensors, namely the Nernst-Planck-Poisson (NPP) model, which is the most general of the presented models, therefore the most widely applicable. It allows the modelling of the transport processes occurring in ion sensors and generating the potentiometric response. Details of the solution of the NPP model (including the numerical methods used) are shown. The comparisons between NPP and the more idealized models are presented. The applicability of the model to describe the formation of diffusion potential in reference electrode, the lower detection limit of both ion-exchanger and neutral carrier electrodes and the effect of the complexation in the membrane are discussed. The model was applied for the description of both types of electrodes, i.e. with the inner filling solution and solidcontact electrodes. The NPP model allows the electrochemical methods other than potentiometry to be described. Application of this model in Electrochemical Impedance Spectroscopy is discussed and a possible use in chrono-potentiometry is indicated. By combining the NPP model with evolutionary algorithms, namely Hierarchical Genetic Strategy (HGS), a novel method allowing the facilitation of the design of ion sensors was created. It is described in detail in this thesis and its possible applications in the field of ion sensors are indicated. Finally, some interesting effects occurring in the ion sensors (i.e. overshot response and influence of anionic sites) as well as the possible applications of NPP in biochemistry are described.
Resumo:
Ion mobility spectrometry (IMS) is a straightforward, low cost method for fast and sensitive determination of organic and inorganic analytes. Originally this portable technique was applied to the determination of gas phase compounds in security and military use. Nowadays, IMS has received increasing attention in environmental and biological analysis, and in food quality determination. This thesis consists of literature review of suitable sample preparation and introduction methods for liquid matrices applicable to IMS from its early development stages to date. Thermal desorption, solid phase microextraction (SPME) and membrane extraction were examined in experimental investigations of hazardous aquatic pollutants and potential pollutants. Also the effect of different natural waters on the extraction efficiency was studied, and the utilised IMS data processing methods are discussed. Parameters such as extraction and desorption temperatures, extraction time, SPME fibre depth, SPME fibre type and salt addition were examined for the studied sample preparation and introduction methods. The observed critical parameters were extracting material and temperature. The extraction methods showed time and cost effectiveness because sampling could be performed in single step procedures and from different natural water matrices within a few minutes. Based on these experimental and theoretical studies, the most suitable method to test in the automated monitoring system is membrane extraction. In future an IMS based early warning system for monitoring water pollutants could ensure the safe supply of drinking water. IMS can also be utilised for monitoring natural waters in cases of environmental leakage or chemical accidents. When combined with sophisticated sample introduction methods, IMS possesses the potential for both on-line and on-site identification of analytes in different water matrices.
Resumo:
This work aimed to evaluate the uptake and translocation of quinclorac in function of application sites (shoot or roots) by Echinochloa crusgalli biotypes resistant and susceptible to this herbicide. The treatments consisted of quinclorac doses (0; 0.5; 1; 2; 4; 16 and 64 ppm), applied on the shoot or roots of seedlings of barnyardgrass biotypes. The experimental units consisted of plastic cups containing 250 cm³ of sand. The treatments were applied 10 days after emergence, when barnyardgrass plants reached a 2- to 3- leaf growth stage. The barnyardgrass biotypes were irrigated with nutritive solution weekly and maintained for 40 days after emergence, when length, fresh and dry matter of shoot and roots were evaluated. Variance analysis was carried out using the F test at 5% probability, and in case of significance, a non-linear regression analysis was also carried out using a three-parameter logistic model. In the susceptible biotype, quinclorac was more absorbed by the roots than by the shoot. Comparing dry mass production of the different plant parts of the susceptible biotype per application site, it was verified that quinclorac action is higher when applied to the plant roots. However, for the resistant biotype, it was not possible to determine the dose causing 50% reduction in dry mass accumulation (GR50) and in the resistance index (RI) between both biotypes, due to its high resistance to quinclorac (128 times the recommended dosage). The results showed that quinclorac resistance by the evaluated biotype is not due to differences in the absorption site, strongly suggesting that the resistance acquired by the biotype may result from alteration in the target site.
Resumo:
Inorganic-organic sol-gel hybrid coatings can be used for improving and modifying properties of wood-based materials. By selecting a proper precursor, wood can be made water repellent, decay-, moisture- or UV-resistant. However, to control the barrier properties of sol-gel coatings on wood substrates against moisture uptake and weathering, an understanding of the surface morphology and chemistry of the deposited sol-gel coatings on wood substrates is needed. Mechanical pulp is used in production of wood-containing printing papers. The physical and chemical fiber surface characteristics, as created in the chosen mechanical pulp manufacturing process, play a key role in controlling the properties of the end-use product. A detailed understanding of how process parameters influence fiber surfaces can help improving cost-effectiveness of pulp and paper production. The current work focuses on physico-chemical characterization of modified wood-based materials with surface sensitive analytical tools. The overall objectives were, through advanced microscopy and chemical analysis techniques, (i) to collect versatile information about the surface structures of Norway spruce thermomechanical pulp fiber walls and understand how they are influenced by the selected chemical treatments, and (ii) to clarify the effect of various sol-gel coatings on surface structural and chemical properties of wood-based substrates. A special emphasis was on understanding the effect of sol-gel coatings on the water repellency of modified wood and paper surfaces. In the first part of the work, effects of chemical treatment on micro- and nano-scale surface structure of 1st stage TMP latewood fibers from Norway spruce were investigated. The chemicals applied were buffered sodium oxalate and hydrochloric acid. The outer and the inner fiber wall layers of the untreated and chemically treated fibers were separately analyzed by light microscopy, atomic force microscopy and field-emission scanning electron microscopy. The selected characterization methods enabled the demonstration of the effect of different treatments on the fiber surface structure, both visually and quantitatively. The outer fiber wall areas appeared as intact bands surrounding the fiber and they were clearly rougher than areas of exposed inner fiber wall. The roughness of the outer fiber wall areas increased most in the sodium oxalate treatment. The results indicated formation of more surface pores on the exposed inner fiber wall areas than on the corresponding outer fiber wall areas as a result of the chemical treatments. The hydrochloric acid treatment seemed to increase the surface porosity of the inner wall areas. In the second part of the work, three silane-based sol-gel hybrid coatings were selected in order to improve moisture resistance of wood and paper substrates. The coatings differed from each other in terms of having different alkyl (CH3–, CH3-(CH2)7–) and fluorocarbon (CF3–) chains attached to the trialkoxysilane sol-gel precursor. The sol-gel coatings were deposited by a wet coating method, i.e. spraying or spreading by brush. The effect of solgel coatings on surface structural and chemical properties of wood-based substrates was studied by using advanced surface analyzing tools: atomic force microscopy, X-ray photoelectron spectroscopy and time-of-flight secondary ion spectroscopy. The results show that the applied sol-gel coatings, deposited as thin films or particulate coatings, have different effects on surface characteristics of wood and wood-based materials. The coating which has a long hydrocarbon chain (CH3-(CH2)7–) attached to the silane backbone (octyltriethoxysilane) produced the highest hydrophobicity for wood and wood-based materials.
Resumo:
In Brazil, few research works on mechanisms of weed resistance to glyphosate have been conducted so far. Therefore, this research aimed to study analytical procedures determining the relation between the concentration of plant shikimate after glyphosate application and the plant resistance to this herbicide; and evaluate the glyphosate absorption and translocation into two resistant ® and susceptible (S) horseweed biotypes to glyphosate. Horseweed plants with nine true leaves received glyphosate (720 g a.e. ha-1), and 2, 3, 4, 7 and 10 days after application (DAA) the concentration of shikimic acid was measured by HPLC. In another experiment, plants were treated with radiolabeled glyphosate (14C) (1.456 MBq mmol-1 specific activity) and radioactivity was measured 4, 8, 24, 48 and 72 hours after treatment (HAT) by liquid scintillation spectrometry. The shikimate concentration in plants increased 16,351.14 and 7,892.25 mg kg-1 of dry weight, for R and S plants respectively, at seven DAA. Therefore, the procedure for quantification of shikimic acid was suitable for R and S plants differentiation to glyphosate, indicating that the R population is actually resistant to glyphosate. On average, 98% of glyphosate applied was absorbed by the studied biotypes, at 72 HAT. Around 68% of the absorbed radioactivity remained on the biotypes leaves treated, the S biotype showing the highest translocation. Therefore, the R biotype resistance mechanism studied is associated to the differential translocation.
Resumo:
Ribonucleic acid (RNA) has many biological roles in cells: it takes part in coding, decoding, regulating and expressing of the genes as well as has the capacity to work as a catalyst in numerous biological reactions. These qualities make RNA an interesting object of various studies. Development of useful tools with which to investigate RNA is a prerequisite for more advanced research in the field. One of such tools may be the artificial ribonucleases, which are oligonucleotide conjugates that sequence-selectively cleave complementary RNA targets. This thesis is aimed at developing new efficient metal-ion-based artificial ribonucleases. On one hand, to solve the challenges related to solid-supported synthesis of metal-ion-binding conjugates of oligonucleotides, and on the other hand, to quantify their ability to cleave various oligoribonucleotide targets in a pre-designed sequence selective manner. In this study several artificial ribonucleases based on cleaving capability of metal ion chelated azacrown moiety were designed and synthesized successfully. The most efficient ribonucleases were the ones with two azacrowns close to the 3´- end of the oligonucleotide strand. Different transition metal ions were introduced into the azacrown moiety and among them, the Zn2+ ion was found to be better than Cu2+ and Ni2+ ions.
Resumo:
In tumor-bearing rats, most of the serum amino acids are used for synthesis and oxidation processes by the neoplastic tissue. In the present study, the effect of Walker 256 carcinoma growth on the intestinal absorption of leucine, methionine and glucose was investigated in newly weaned and mature rats. Food intake and carcass weight were decreased in newly weaned (NT) and mature (MT) rats bearing Walker 256 tumor in comparison with control animals (NC and MC). The tumor/carcass weight ratio was higher in NT than in MT rats, whereas nitrogen balance was significantly decreased in both as compared to control animals. Glucose absorption was significantly reduced in MT rats (MT = 47.3 ± 4.9 vs MC = 99.8 ± 5.3 nmol min-1 cm-1, Kruskal-Wallis test, P<0.05) but this fact did not hamper the evolution of cancer. There was a significant increase in methionine absorption in both groups (NT = 4.2 ± 0.3 and MT = 2.0 ± 0.1 vs NC = 3.7 ± 0.1 and MC = 1.2 ± 0.2 nmol min-1 cm-1, Kruskal-Wallis test, P<0.05), whereas leucine absorption was increased only in young tumor-bearing rats (NT = 8.6 ± 0.2 vs NC = 7.7 ± 0.4 nmol min-1 cm-1, Kruskal-Wallis test, P<0.05), suggesting that these metabolites are being used for synthesis and oxidation processes by the neoplastic cells, which might ensure their rapid proliferation especially in NT rats.
Resumo:
Since the discovery of the up-conversion phenomenon, there has been an ever increasing interest in up-converting phosphors in which the absorption of two or more low energy photons is followed by emission of a higher energy photon. Most up-conversion luminescence materials operate by using a combination of a trivalent rare earth (lanthanide) sensitizer (e.g. Yb or Er) and an activator (e.g. Er, Ho, Tm or Pr) ion in a crystal lattice. Up-converting phosphors have a variety of potential applications as lasers and displays as well as inks for security printing (e.g. bank notes and bonds). One of the most sophisticated applications of lanthanide up-conversion luminescence is probably in medical diagnostics. However, there are some major problems in the use of photoluminescence based on the direct UV excitation in immunoassays. Human blood absorbs strongly UV radiation as well as the emission of the phosphor in the visible. A promising way to overcome the problems arising from the blood absorption is to use a long wavelength excitation and benefit from the up-conversion luminescence. Since there is practically no absorption by the whole-blood in the near IR region, it has no capability for up-conversion in the excitation wavelength region of the conventional up-converting phosphor based on the Yb3+ (sensitizer) and Er3+ (activator) combination. The aim of this work was to prepare nanocrystalline materials with high red (and green) up-conversion luminescence efficiency for use in quantitative whole-blood immunoassays. For coupling to biological compounds, nanometer-sized (crystallite size below 50 nm) up-converting phosphor particles are required. The nanocrystalline ZrO2:Yb3+,Er3+, Y2O2S:Yb3+,Er3+, NaYF4:Yb3+,Er3+ and NaRF4-NaR’F4 (R: Y, Yb, Er) materials, prepared with the combustion, sol-gel, flux, co-precipitation and solvothermal synthesis, were studied using the thermal analysis, FT-IR spectroscopy, transmission electron microscopy, EDX spectroscopy, XANES/EXAFS measurements, absorption spectroscopy, X-ray powder diffraction, as well as up-conversion and thermoluminescence spectroscopies. The effect of the impurities of the phosphors, crystallite size, as well as the crystal structure on the up-conversion luminescence intensity was analyzed. Finally, a new phenomenon, persistent up-conversion luminescence was introduced and discussed. For efficient use in bioassays, more work is needed to yield nanomaterials with smaller and more uniform crystallite sizes. Surface modifications need to be studied to improve the dispersion in water. On the other hand, further work must be carried out to optimize the persistent up-conversion luminescence of the nanomaterials to allow for their use as efficient immunoassay nanomaterials combining the advantages of both up-conversion and persistent luminescence.