996 resultados para Inverse modelling


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most sedimentary modelling programs developed in recent years focus on either terrigenous or carbonate marine sedimentation. Nevertheless, only a few programs have attempted to consider mixed terrigenous-carbonate sedimentation, and most of these are two-dimensional, which is a major restriction since geological processes take place in 3D. This paper presents the basic concepts of a new 3D mathematical forward simulation model for clastic sediments, which was developed from SIMSAFADIM, a previous 3D carbonate sedimentation model. The new extended model, SIMSAFADIM-CLASTIC, simulates processes of autochthonous marine carbonate production and accumulation, together with clastic transport and sedimentation in three dimensions of both carbonate and terrigenous sediments. Other models and modelling strategies may also provide realistic and efficient tools for prediction of stratigraphic architecture and facies distribution of sedimentary deposits. However, SIMSAFADIM-CLASTIC becomes an innovative model that attempts to simulate different sediment types using a process-based approach, therefore being a useful tool for 3D prediction of stratigraphic architecture and facies distribution in sedimentary basins. This model is applied to the neogene Vallès-Penedès half-graben (western Mediterranean, NE Spain) to show the capacity of the program when applied to a realistic geologic situation involving interactions between terrigenous clastics and carbonate sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metamorphism of the carbonate rocks of the SE Zanskar Tibetan zone has been studied by `'illite crystallinity'' and calcite-dolomite thermometry. The epizonal Zangla unit overlies the anchizonal Chumik unit. This discontinuous inverse zonation demonstrates a late to post-metamorphic thrust of the first unit over the second. The studied area underwent a complex tectonic history: - The tectonic units were stacked from the NE to the SW, generating recumbent folds, NE dipping thrusts and the regional metamorphism. The compressive movements were active under lower temperature conditions, resulting in late thrusts that disturbed the metamorphic zonation. The discontinuous inverse metamorphic zonation dates from this phase. - A NE vergent backfolding phase occurred at lower temperature conditions. It caused the uplift of more metamorphic levels. - A late extensional phase is revealed by the presence of NE dipping low angle normal faults, and a major high angle fault, the Sarchu fault. The low angle normal faults locally run along earlier thrusts (composite tectonic contacts). Their throw has been sufficient to reset a normal stratigraphic superposition (young layers overlying old ones), but insufficient to erase the inverse metamorphic relationship. However, the combined action of backfolding and normal faulting can locally lessen, or even cancel, the inverse metamorphic superposition. After deduction of the normal fault translation, the vertical component of the original thrust displacement through stratigraphy is 400 m, which is a value far too low to explain the temperature difference between the two units. The horizontal component of displacement is therefore far more important than the vertical one. The regional distribution of metamorphism within the Zangla unit points out to an anchizonal front and an epizonal inner part. This fact is in agreement with nappe tectonics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En la investigació de la complexació de metalls mitjançant eines electroanalítiques són emprades dues aproximacions generals. La primera, anomenada de modelatge dur (hardmodelling), es basa en la formulació d'un model fisicoquímic conjunt per als processos electròdic i de complexació i en la resolució analítica o numèrica del model. Posteriorment, l'ajust dels paràmetres del model a les dades experimentals donarà la informació desitjada sobre el procés de complexació. La segona aproximació, anomenada de modelatge tou (soft-modelling), es basa en la identificació d'un model de complexació a partir de l'anàlisi numèrica i estadística de les dades, sense cap assumpció prèvia d'un model. Aquesta aproximació, que ha estat extensivament emprada amb dades espectroscòpiques, ho ha estat poquíssim amb dades electroquímiques. En aquest article tractem de la formulació d'un model (hard-modelling) per a la complexació de metalls en sistemes amb mescles de lligands, incloent-hi lligands macromoleculars, i de l'aplicació d

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depth-averaged velocities and unit discharges within a 30 km reach of one of the world's largest rivers, the Rio Parana, Argentina, were simulated using three hydrodynamic models with different process representations: a reduced complexity (RC) model that neglects most of the physics governing fluid flow, a two-dimensional model based on the shallow water equations, and a three-dimensional model based on the Reynolds-averaged Navier-Stokes equations. Row characteristics simulated using all three models were compared with data obtained by acoustic Doppler current profiler surveys at four cross sections within the study reach. This analysis demonstrates that, surprisingly, the performance of the RC model is generally equal to, and in some instances better than, that of the physics based models in terms of the statistical agreement between simulated and measured flow properties. In addition, in contrast to previous applications of RC models, the present study demonstrates that the RC model can successfully predict measured flow velocities. The strong performance of the RC model reflects, in part, the simplicity of the depth-averaged mean flow patterns within the study reach and the dominant role of channel-scale topographic features in controlling the flow dynamics. Moreover, the very low water surface slopes that typify large sand-bed rivers enable flow depths to be estimated reliably in the RC model using a simple fixed-lid planar water surface approximation. This approach overcomes a major problem encountered in the application of RC models in environments characterised by shallow flows and steep bed gradients. The RC model is four orders of magnitude faster than the physics based models when performing steady-state hydrodynamic calculations. However, the iterative nature of the RC model calculations implies a reduction in computational efficiency relative to some other RC models. A further implication of this is that, if used to simulate channel morphodynamics, the present RC model may offer only a marginal advantage in terms of computational efficiency over approaches based on the shallow water equations. These observations illustrate the trade off between model realism and efficiency that is a key consideration in RC modelling. Moreover, this outcome highlights a need to rethink the use of RC morphodynamic models in fluvial geomorphology and to move away from existing grid-based approaches, such as the popular cellular automata (CA) models, that remain essentially reductionist in nature. In the case of the world's largest sand-bed rivers, this might be achieved by implementing the RC model outlined here as one element within a hierarchical modelling framework that would enable computationally efficient simulation of the morphodynamics of large rivers over millennial time scales. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Valuma-aluetason mallisovellus suojakaistojen käytöstä eroosion torjunnassa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the use of ensemble of predictors in order to improve the performance of spatial prediction methods. Support vector regression (SVR), a popular method from the field of statistical machine learning, is used. Several instances of SVR are combined using different data sampling schemes (bagging and boosting). Bagging shows good performance, and proves to be more computationally efficient than training a single SVR model while reducing error. Boosting, however, does not improve results on this specific problem.