908 resultados para Inertia (Mechanics).


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summer bloom-derived phytodetritus settles rapidly to the seafloor on the West Antarctic Peninsula (WAP) continental shelf, where it appears to degrade relatively slowly, forming a sediment ""food bank"" for benthic detritivores. We used stable carbon and nitrogen isotopes to examine sources and sinks of particulate organic material (POM) reaching the WAP shelf benthos (550-625 m depths), and to explore trophic linkages among the most abundant benthic megafauna. We measured delta(13)C and delta(15)N values in major megafaunal taxa (n = 26) and potential food sources, including suspended and sinking POM, ice algae, sediment organic carbon, phytodetritus, and macrofaunal polychaetes. The range in delta(13)C values (> 14 parts per thousand) of suspended POM was considerably broader than in sedimentary POC, where little temporal variability in stable isotope signatures was observed. While benthic megafauna also exhibited a broad range of VC values, organic carbon entering the benthic food web appeared to be derived primarily from phytoplankton production, with little input from ice algae. One group of organisms, primarily deposit-feeders, appeared to rely on fresh phytodetritus recovered from the sediments, and sediment organic material that had been reworked by sediment microbes. A second group of animals, including many mobile invertebrate and fish predators, appeared to utilize epibenthic or pelagic food resources such as zooplankton. One surface-deposit-feeding holothurian (Protelpidia murrayi) exhibited seasonal variability in stable isotope values of body tissue, while other surface- and subsurface-deposit-feeders showed no evidence of seasonal variability in food source or trophic position. Detritus from phytoplankton blooms appears to be the primary source of organic material for the detritivorous benthos; however, seasonal variability in the supply of this material is not mirrored in the sediments, and only to a minor degree in the benthic fauna. This pattern suggests substantial inertia in benthic-pelagic coupling, whereby the sediment ecosystem integrates long-term variability in production processes in the water column above. Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of hydrodynamic coefficients of full scale underwater vehicles using system identification (SI) is an extremely powerful technique. The procedure is based on experimental runs and on the analysis of on-board sensors and thrusters signals. The technique is cost effective and it has high repeatability; however, for open-frame underwater vehicles, it lacks accuracy due to the sensors' noise and the poor modeling of thruster-hull and thruster-thruster interaction effects. In this work, forced oscillation tests were undertaken with a full scale open-frame underwater vehicle. These conducted tests are unique in the sense that there are not many examples in the literature taking advantage of a PMM installation for testing a prototype and; consequently, allowing the comparison between the experimental results and the ones estimated by parameter identification. The Morison's equation inertia and drag coefficients were estimated with two parameter identification methods, that is, the weighted and the ordinary least-squares procedures. It was verified that the in-line force estimated from Morison's equation agrees well with the measured one except in the region around the motion inversion points. On the other hand, the error analysis showed that the ordinary least-squares provided better accuracy and, therefore, was used to evaluate the ratio between inertia and drag forces for a range of Keulegan-Carpenter and Reynolds numbers. It was concluded that, although both experimental and estimation techniques proved to be powerful tools for evaluation of an open-frame underwater vehicle's hydrodynamic coefficients, the research provided a rich amount of reference data for comparison with reduced models as well as for dynamic motion simulation of ROVs. [DOI: 10.1115/1.4004952]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extensive investigation of strontium titanate, SrTiO3 (STO), nanospheres synthesized via a microwave-assisted hydrothermal (MAH) method has been conducted to gain a better insight into thermodynamic, kinetic, and reaction phenomena involved in STO nucleation and crystal growth processes. To this end, quantum chemical modeling based on the density functional theory and periodic super cell models were done. Several experimental techniques were employed to get a deep characterization of structural and optical features of STO nanospheres. A possible formation mechanism was proposed, based on dehydration of titanium and strontium clusters followed by mesoscale transformation and a self-assembly process along an oriented attachment mechanism resulting in spherical like shape. Raman and XANES analysis renders a noncentrosymmetric environment for the octahedral titanium, while infrared and first order Raman modes reveal OH groups which are unsystematically incorporated into uncoordinated superficial sites. These results seem to indicate that the key component is the presence of distorted TiO6 clusters to engender a luminescence property. Analysis of band structure, density Of states, and charge map shows that there is a close relationship among local broken symmetry, polarization, and energy split of the 3d orbitals of titanium. The interplay among these electronic and structural features provides necessary conditions to evaluate its luminescent properties under two energy excitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we introduce the class of quantum mechanics superpotentials W(x) = g epsilon(x)x(2n) and study in detail the cases n = 0 and 1. The n = 0 superpotential is shown to lead to the known problem of two supersymmetrically related Dirac delta potentials (well and barrier). The n = 1 case results in the potentials V+/-(x) = g(2)x(4) +/- 2g|x|. For V-, we present the exact ground-state solution and study the excited states by a variational technique. Starting from the ground state of V- and using logarithmic perturbation theory, we study the ground states of V+ and also of V(x) = g(2)x(4) and compare the result obtained in this new way with other results for this last potential in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Mechanisms linking behavioral stress and inflammation are poorly understood, mainly in distal lung tissue. Objective: We have investigated whether the forced swim stress (FS) could modulate lung tissue mechanics, iNOS, cytokines, oxidative stress activation, eosinophilic recruitment, and remodeling in guinea pigs (GP) with chronic pulmonary inflammation. Methods: The GP were exposed to ovalbumin or saline aerosols (2x/wk/4wks, OVA, and SAL). Twenty-four hours after the 4th inhalation, the GP were submitted to the FS protocol (5x/wk/2wks, SAL-S, and OVA-S). Seventy-two hours after the 7th inhalation, lung strips were cut and tissue resistance (Rt) and elastance (Et) were obtained (at baseline and after OVA and Ach challenge). Strips were submitted to histopathological evaluation. Results: The adrenals' weight, the serum cortisol, and the catecholamines were measured. There was an increase in IL-2, IL-5, IL-13, IFN-gamma, iNOS, 8-iso-PGF2 alpha, and in %Rt and %Et after Ach challenge in the SAL-S group compared to the SAL one. The OVA-S group has had an increase in %Rt and %Et after the OVA challenge, in %Et after the Ach and in IL-4, 8-iso-PGF2 alpha, and actin compared to the OVA. Adrenal weight and cortisol serum were increased in stressed animals compared to nonstressed ones, and the catecholamines were unaltered. Conclusion & clinical relevance: Repeated stress has increased distal lung constriction, which was associated with an increase of actin, IL-4, and 8-iso-PGF2 alpha levels. Stress has also induced an activation of iNOS, cytokines, and oxidative stress pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydration of mesityl oxide (MOx) was investigated through a sequential quantum mechanics/molecular mechanics approach. Emphasis was placed on the analysis of the role played by water in the MOx syn-anti equilibrium and the electronic absorption spectrum. Results for the structure of the MOx-water solution, free energy of solvation and polarization effects are also reported. Our main conclusion was that in gas-phase and in low-polarity solvents, the MOx exists dominantly in syn-form and in aqueous solution in anti-form. This conclusion was supported by Gibbs free energy calculations in gas phase and in-water by quantum mechanical calculations with polarizable continuum model and thermodynamic perturbation theory in Monte Carlo simulations using a polarized MOx model. The consideration of the in-water polarization of the MOx is very important to correctly describe the solute-solvent electrostatic interaction. Our best estimate for the shift of the pi-pi* transition energy of MOx, when it changes from gas-phase to water solvent, shows a red-shift of -2,520 +/- 90 cm(-1), which is only 110 cm(-1) (0.014 eV) below the experimental extrapolation of -2,410 +/- 90 cm(-1). This red-shift of around -2,500 cm(-1) can be divided in two distinct and opposite contributions. One contribution is related to the syn -> anti conformational change leading to a blue-shift of similar to 1,700 cm(-1). Other contribution is the solvent effect on the electronic structure of the MOx leading to a red-shift of around -4,200 cm(-1). Additionally, this red-shift caused by the solvent effect on the electronic structure can by composed by approximately 60 % due to the electrostatic bulk effect, 10 % due to the explicit inclusion of the hydrogen-bonded water molecules and 30 % due to the explicit inclusion of the nearest water molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation of a ring under axial compression is analyzed in order to estimate a favorable ring specimen geometry capable of limiting the influence of friction on the stress-strain curve obtained from SHPB tests. The analysis shows that the use of a ring specimen with a large inner diameter and a small radial thickness offers some advantages comparing with the traditional disk sample. In particular, it can improve the reliability of the test results for ductile materials in the presence of friction. Based on the deformation analysis of a ductile ring under compression, a correction coefficient is proposed to relate the actual material stress strain curve with the reading from the SHPB. It is shown using finite element simulation that the proposed correction can be used for a wide range of conventional ductile materials. Experimental results with steel alloys indicate that the correction procedure is an effective technique for an accurate measurement of the dynamic material strength response. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aims: Epidemiological studies suggest that stress has an impact on asthmatic exacerbations. We evaluated if repeated stress, induced by forced swimming, modulates lung mechanics, distal airway inflammation and extracellular matrix remodeling in guinea pigs with chronic allergic inflammation. Methods: Guinea pigs were submitted to 7 ovalbumin or saline aerosols (1-5 mg/ml during 4 weeks; OVA and SAL groups). Twenty-four hours after the 4th inhalation, guinea pigs were submitted to the stress protocol 5 times a week during 2 weeks (SAL-S and OVA-S groups). Seventy-two hours after the 7th inhalation, guinea pigs were anesthetized and mechanically ventilated. Resistance and elastance of the respiratory system were obtained at baseline and after ovalbumin challenge. Lungs were removed, and inflammatory and extracellular matrix remodeling of distal airways was assessed by morphometry. Adrenals were removed and weighed. Results: The relative adrenal weight was greater in stressed guinea pigs compared to non-stressed animals (p < 0.001). Repeated stress increased the percent elastance of the respiratory system after antigen challenge and eosinophils and lymphocytes in the OVA-S compared to the OVA group (p < 0.001, p = 0.003 and p < 0.001). Neither collagen nor elastic fiber contents were modified by stress in sensitized animals. Conclusions: In this animal model, repeated stress amplified bronchoconstriction and inflammatory response in distal airways without interfering with extracellular matrix remodeling. Copyright (C) 2011 S. Karger AG, Basel