908 resultados para Image-to-Image Variation
Resumo:
The purpose of this research was to examine the fasting practices of Eastern Orthodox Christians (EOCs) in northeastern Pennsylvania. Fasting, according to Eastern Orthodox Church doctrine, is primarily abstinence from meat, dairy products, fish and certain other foods during Easter Lent and other periods, for approximately 180 days annually. Goals were to discern what EOCs consider their fasting rules to be, their actual fasting practices, what factors influence this practice and the relationship of fasting to nutrition. Methodology included 29 months of ethnographic fieldwork at local parishes, content analysis of local written materials and semi-structured interviews of 58 core church members. A pile sort was conducted whereby subjects classified various foods according to fasting or non-fasting status and then sorted the fasting foods into a hierarchy of avoidance. Data were analyzed using ANTHROPAC and NVivo software. Results included identification of a cognitive hierarchy of avoidance, with meat the most important to avoid, followed by dairy and alcoholic beverages. An important finding was the differences in subjects' knowledge of Church doctrine and a wide variation in their actual fasting practices. Contrary to Church doctrine, fish was not usually perceived as a food to abstain from. A historic Byzantine Catholic presence in the area (with a different fasting doctrine), family members who did not fast, and health concerns were some factors that affected fasting practices. A conclusion is that while meat, dairy and alcoholic beverages were usually categorized as foods to avoid during fasts, it is not possible to generalize with regard to actual practices or the impact of fasting on nutrition, due to individual variation. It was demonstrated that qualitative data could provide information that can be crucial to know prior to conducting quantitative nutrition research or counseling. Findings of this study suggest that one cannot assume subjects who belong to a given religion that has prescribed food avoidance practices are following them homogeneously and/or according to official doctrine. ^
Defining the role of floating periphyton mats in shaping food-web dynamics in the Florida Everglades
Resumo:
Expansive periphyton mats are a striking characteristic of the Florida Everglades. Floating periphyton mats are home to a diverse macroinvertebrate community dominated by chironomid and ceratopogonid larvae and amphipods that use the mat as both a food resource and refuge from predation. While this periphyton complex functions as a self-organizing system, it also serves as a base for trophic interactions with larger organisms. The purpose of my research was to quantify variation in the macroinvertebrate community inhabiting floating periphyton mats, describe the role of mats in shaping food-web dynamics, and describe how these trophic interactions change with eutrophication. ^ I characterized the macroinvertebrate community inhabiting periphyton through a wet-season by describing spatial variation on scales from 0.2 m to 3 km. Floating periphyton mats contained a diverse macroinvertebrate community, with greater taxonomic richness and higher densities of many taxa than adjacent microhabitats. Macroinvertebrate density increased through the wet season as periphyton mats developed. While some variation was noted among sites, spatial patterns were not observed on smaller scales. I also sampled ten sites representing gradients of hydroperiod and nutrient (P) levels. The density of macroinvertebrates inhabiting periphyton mats increased with increasing P availability; however, short-hydroperiod P-enriched sites had the highest macroinvertebrate density. This pattern suggests a synergistic interaction of top-down and bottom-up effects. In contrast, macroinvertebrate density was lower in benthic floc, where it was negatively correlated with hydroperiod. ^ I used two types of mesocosms (field cages and tanks) to manipulate large consumers (fish and grass shrimp) with inclusion/exclusion cages over an experimental P gradient. In most cases, periphyton mats served as an effective predation refuge. Macroinvertebrates were consumed more frequently in P-enriched treatments, where mats were also heavily grazed. Macroinvertebrate densities decreased with increasing P in benthic floc, but increased with enrichment in periphyton mats until levels were reached that caused disassociation of the mat. ^ This research documents several indirect trophic interactions that can occur in complex habitats, and emphasizes the need to characterize dynamics of all microhabitats to fully describe the dynamics of an ecosystem. ^
Resumo:
Limestone-based (karstic) freshwater wetlands of the Everglades, Belize, Mexico, and Jamaica are distinctive in having a high biomass of CaCO3-rich periphyton mats. Diatoms are common components of these mats and show predictable responses to environmental variation, making them good candidates for assessing nutrient enrichment in these naturally ultraoligotrophic wetlands. However, aside from in the Everglades of southern Florida, very little research has been done to document the diatoms and their environmental preferences in karstic Caribbean wetlands, which are increasingly threatened by eutrophication. We identified diatoms in periphyton mats collected during wet and dry periods from the Everglades and similar freshwater karstic wetlands in Belize, Mexico, and Jamaica. We compared diatom assemblage composition and diversity among locations and periods, and the effect of the limiting nutrient, P, on species composition among locations. We used periphyton-mat total P (TP) as a metric of availability. A total of 176 diatom species in 45 genera were recorded from the 4 locations. Twenty-three of these species, including 9 that are considered indicative of Everglades diatom flora, were found in all 4 locations. In Everglades and Caribbean sites, we identified assemblages and indicator species associated with low and high periphyton-mat TP and calculated TP optima and tolerances for each indicator species. TP optima and tolerances of indicator species differed between the Everglades and the Caribbean, but weighted averaging models predicted periphyton-mat TP concentrations from diatom assemblages at Everglades (R2 = 0.56) and Caribbean (R2 = 0.85) locations. These results show that diatoms can be effective indicators of water quality in karstic wetlands of the Caribbean, but application of regionally generated transfer functions to distant sites provides less reliable estimates than locally developed functions.
Resumo:
Over the last one hundred years, compartmentalization and water management activities have reduced water flow to the ridge and slough landscape of the Everglades. As a result, the once corrugated landscape has become topographically and vegetationally uniform. The focus of this study was to quantify variation in surface flow in the ridge and slough landscape and to relate flow conditions to particulate transport and deposition. Over the 2002–2003 and 2003–2004 wet seasons, surface velocities and particulate accumulation were measured in upper Shark River Slough in Everglades National Park. Landscape characteristics such as elevation, plant density and biomass also were examined to determine their impact on flow characteristics and material transport. The results of this study demonstrate that the release of water during the wet season not only increases water levels, but also increased flow speeds and particulate transport and availability. Further, flow speeds were positively and significantly correlated with water level thereby enhancing particulate transport in sloughs relative to ridges especially during peak flow periods. Our results also indicate that the distribution of biomass in the water column, including floating plants and periphyton, affects velocity magnitude and shape of vertical profiles, especially in the sloughs where Utricularia spp. and periphyton mats are more abundant. Plot clearing experiments suggest that the presence of surface periphyton and Utricularia exert greater control over flow characteristics than the identity (i.e., sawgrass or spike rush) or density of emergent macrophytes, two parameters frequently incorporated into models describing flow through vegetated canopies. Based on these results, we suggest that future modeling efforts must take the presence of floating biomass, such as Utricularia, and presence of periphyton into consideration when describing particulate transport.
Resumo:
We present a framework for explaining variation in predator invasion success and predator impacts on native prey that integrates information about predator–prey naïveté, predator and prey behavioral responses to each other, consumptive and non-consumptive effects of predators on prey, and interacting effects of multiple species interactions. We begin with the ‘naïve prey’ hypothesis that posits that naïve, native prey that lack evolutionary history with non-native predators suffer heavy predation because they exhibit ineffective antipredator responses to novel predators. Not all naïve prey, however, show ineffective antipredator responses to novel predators. To explain variation in prey response to novel predators, we focus on the interaction between prey use of general versus specific cues and responses, and the functional similarity of non-native and native predators. Effective antipredator responses reduce predation rates (reduce consumptive effects of predators, CEs), but often also carry costs that result in non-consumptive effects (NCEs) of predators. We contrast expected CEs versus NCEs for non-native versus native predators, and discuss how differences in the relative magnitudes of CEs and NCEs might influence invasion dynamics. Going beyond the effects of naïve prey, we discuss how the ‘naïve prey’, ‘enemy release’ and ‘evolution of increased competitive ability’ (EICA) hypotheses are inter-related, and how the importance of all three might be mediated by prey and predator naïveté. These ideas hinge on the notion that non-native predators enjoy a ‘novelty advantage’ associated with the naïveté of native prey and top predators. However, non-native predators could instead suffer from a novelty disadvantage because they are also naïve to their new prey and potential predators. We hypothesize that patterns of community similarity and evolution might explain the variation in novelty advantage that can underlie variation in invasion outcomes. Finally, we discuss management implications of our framework, including suggestions for managing invasive predators, predator reintroductions and biological control.
Resumo:
We hypothesized that fishes in short-hydroperiod wetlands display pulses in activity tied to seasonal flooding and drying, with relatively low activity during intervening periods. To evaluate this hypothesis, sampling devices that funnel fish into traps (drift fences) were used to investigate fish movement across the Everglades, U.S.A. Samples were collected at six sites in the Rocky Glades, a seasonally flooded karstic habitat located on the southeastern edge of the Everglades. Four species that display distinct recovery patterns following drought in long-hydroperiod wetlands were studied: eastern mosquitofish (Gambusia holbrooki) and flagfish (Jordanella floridae) (rapid recovery); and bluefin killifish (Lucania goodei) and least killifish (Heterandria formosa) (slow recovery). Consistent with our hypothesized conceptual model, fishes increased movement soon after flooding (immigration period) and just before drying (emigration period), but decreased activity in the intervening foraging period. We also found that eastern mosquitofish and flagfish arrived earlier and showed stronger responses to hydrological variation than either least killifish or bluefin killifish. We concluded that these fishes actively colonize and escape ephemeral wetlands in response to flooding and drying, and display species-specific differences related to flooding and drying that reflect differences in dispersal ability. These results have important implications for Everglades fish metacommunity dynamics.
Resumo:
In 2005 we began a multi-year intensive monitoring and assessment study of tropical hardwood hammocks within two distinct hydrologic regions in Everglades National Park, under funding from the CERP Monitoring and Assessment Program. In serving as an Annual Report for 2010, this document, reports in detail on the population dynamics and status of tropical hardwood hammocks in Shark Slough and adjacent marl prairies during a 4-year period between 2005 and 2009. 2005-09 was a period that saw a marked drawdown in marsh water levels (July 2006 - July 2008), and an active hurricane season in 2005 with two hurricanes, Hurricane Katrina and Wilma, making landfall over south Florida. Thus much of our focus here is on the responses of these forests to annual variation in marsh water level, and on recovery from disturbance. Most of the data are from 16 rectangular permanent plots of 225-625 m2 , with all trees mapped and tagged, and bi-annual sampling of the tree, sapling, shrub, and herb layer in a nested design. At each visit, canopy photos were taken and later analyzed for determination of interannual variation in leaf area index and canopy openness. Three of the plots were sampled at 2-month intervals, in order to gain a better idea of seasonal dynamics in litterfall and litter turnover. Changes in canopy structure were monitored through a vertical line intercept method.
Resumo:
Studies indicate that overweight and obesity protect against HIV-disease progression in antiretroviral therapy (ART)-naïve patients. We examined retrospectively the relationship of overweight/obesity with HIV-disease progression in ART-naïve HIV+ adults in Botswana in a case-control study with 18-month follow-up, which included 217 participants, 139 with BMI 18.0-24.9 kg/m2 and 78 with BMI ≥25 kg/m2. Archived plasma samples were used to determine inflammatory markers: leptin and bacterial endotoxin lipopolysaccharide (LPS), and genotype single nucleotide polymorphisms (SNPs) of the Fat Mass and Obesity Associated Gene (FTO). At baseline, BMI was inversely associated with risk for AIDS-defining conditions (HR=0.218; 95%CI=0.068, 0.701, P=0.011), and higher fat mass was associated with reduced risk of the combined outcome of CD4+cell count ≤250/µL and AIDS-defining conditions, whichever occurred earlier (HR=0.918; 95%CI=0.847, 0.994, P=0.036) over 18 months, adjusting for age, gender, marriage, children, and baseline CD4+cell count and HIV-viral load. FTO-SNP rs17817449 was associated with BMI (OR=1.082; 95%CI=1.001, 1.169; P=0.047). Fat mass was associated with the risk alleles of rs1121980 (OR=1.065; 95%CI=1.009, 1.125, P=0.021), rs8050136 (OR=1.078; 95%CI=1.021, 1.140; P=0.007), and rs17817449 (OR=1.086; 95%CI=1.031, 1.145; P=0.002), controlling for age, gender, tribe, total energy intake, and activity. There were no associations of SNPs with markers of disease progression. Leptin levels were positively associated with BMI (β=1.764; 95%CI=0.788, 2.739; P=0.022) and fat mass (β=0.112; 95%CI=0.090, 0.135; P<0.001), but inversely with viral load (β=-0.305; 95%CI=-0.579, -.031; P=0.030). LPS levels were inversely associated with BMI (OR=0.790, 95%CI=0.630, 0.990; P=0.041), and fat mass (OR=0.852, 95%CI=0.757, 0.958; P=0.007) and directly with viral load (OR=2.608, 95%CI=1.111, 6.124; P=0.028), adjusting for age, gender, smoking and %fat mass. In this cohort, overweight/obesity predicted slower HIV-disease progression. Obesity may confer an advantage in maintaining fat stores to support the overactive immune system. FTO-SNPs may contribute to the variation in fat mass; however, they were not associated with HIV-disease progression. Our findings suggest that the obesity paradox may be explained by the association of increased LPS with lower BMI and higher viral load; while viral load decreased with increasing leptin levels. Studies in African populations are needed to clarify whether genetic variation and inflammation mediate the obesity paradox in HIV-disease progression.
Resumo:
This work deals with the analytical, computational and experimental study of phenomena related to the Eddy current induction in low permeability means for embedded electromagnetic braking systems applications. The phenomena of forces generation in opposing to the variation of stationary magnetic flux produced by DC power supplies, set in motion by the application of an external propulsive force are addressed. The study is motivated by search for solving the problem of speed control of PIGs used to verifying and maintaining pipelines, and is led based on the analytical models synthesis, validated by means of computer simulations in Finite Elements environment, provided by engineering support software; and with experimental tests conducted under controlled laboratory conditions. Finally, a damping systems design methodology based on analyzes results conducted throughout the study is presented
Resumo:
Industrial activities like mining, electroplating and the oil extraction process, are increasing the levels of heavy metals such as Cu, Fe, Mg and Cd in aquatic ecosystems. This increase is related to the discharge of effluents containing trace of this elements above the maximum allowed by law. Methods such as ion exchange, membrane filtration and chemical precipitation have been studied as a means of treatment of these metals contamination. The precipitation of metals using anionic surfactants derived from carboxylic acids emerged as an alternative for the removal of metals from industrial effluents. The reaction between bivalent ions and these types of surfactants in aqueous solution leads to the formation of metal carboxylates, which can precipitate in the form of flakes and are subsequently removed by a process of decantation or simple filtration. In this work the metals extraction is performed by using the surfactant sodium hexadecanoate as extracting agent. The main purpose was to study the effect of temperature, solution pH, and concentration of surfactant in the metal removal process. The statistical design of the process showed that the process is directly dependent to changes in pH and concentration of surfactant, but inversely proportional and somewhat dependent to temperature variation, with the latter effect being considered negligible in most cases. The individual study of the effect of temperature showed a strong dependence of the process with the Kraft point, both for the surfactant used as extracting agent, as for the surfactant obtained after the reaction of this surfactant with the metal. From data of temperatures and concentrations of the surfactant was possible to calculate the equilibrium constant for the reaction between sodium hexadecanoate and copper ions. Later, thermodynamic parameters were determined, showing that the process is exothermic and spontaneous.
Resumo:
The modern Aegean Sea is an important source of deep water for the eastern Mediterranean. Its contribution to deep water ventilation is known to fluctuate in response to climatic variation on a decadal timescale. This study uses marine micropalaeontological and stable isotope data to investigate longer-term variability during the late glacial and Holocene, in particular that associated with the deposition of the early Holocene dysoxic/anoxic sapropel S1. Concentrating on the onset of sapropel-forming conditions, we identify the start of 'seasonal' stratification and highlight a lag in d18O response of the planktonic foraminifer N. pachyderma to termination T1b as identified in the d18O record of G. ruber. By use of a simple model we determine that this offset cannot be a function of bioturbation effects. The lag is of the order of 1 kyr and suggests that isolation of intermediate/deep water preceded the start of sapropel formation by up to 1.5 kyr. Using this discovery, we propose an explanation for the major unresolved problem in sapropel studies, namely, the source of nutrient supply required for export productivity to reach levels needed for sustained sapropel deposition. We suggest that nutrients had been accumulating in a stagnant basin for 1-1.5 kyr and that these accumulated resources were utilized during the deposition of S1. In addition, we provide a first quantitative estimate of the diffusive (1/e) mixing timescale for the eastern Mediterranean in its "stratified" sapropel mode, which is of the order of 450 years.
Resumo:
Subspaces and manifolds are two powerful models for high dimensional signals. Subspaces model linear correlation and are a good fit to signals generated by physical systems, such as frontal images of human faces and multiple sources impinging at an antenna array. Manifolds model sources that are not linearly correlated, but where signals are determined by a small number of parameters. Examples are images of human faces under different poses or expressions, and handwritten digits with varying styles. However, there will always be some degree of model mismatch between the subspace or manifold model and the true statistics of the source. This dissertation exploits subspace and manifold models as prior information in various signal processing and machine learning tasks.
A near-low-rank Gaussian mixture model measures proximity to a union of linear or affine subspaces. This simple model can effectively capture the signal distribution when each class is near a subspace. This dissertation studies how the pairwise geometry between these subspaces affects classification performance. When model mismatch is vanishingly small, the probability of misclassification is determined by the product of the sines of the principal angles between subspaces. When the model mismatch is more significant, the probability of misclassification is determined by the sum of the squares of the sines of the principal angles. Reliability of classification is derived in terms of the distribution of signal energy across principal vectors. Larger principal angles lead to smaller classification error, motivating a linear transform that optimizes principal angles. This linear transformation, termed TRAIT, also preserves some specific features in each class, being complementary to a recently developed Low Rank Transform (LRT). Moreover, when the model mismatch is more significant, TRAIT shows superior performance compared to LRT.
The manifold model enforces a constraint on the freedom of data variation. Learning features that are robust to data variation is very important, especially when the size of the training set is small. A learning machine with large numbers of parameters, e.g., deep neural network, can well describe a very complicated data distribution. However, it is also more likely to be sensitive to small perturbations of the data, and to suffer from suffer from degraded performance when generalizing to unseen (test) data.
From the perspective of complexity of function classes, such a learning machine has a huge capacity (complexity), which tends to overfit. The manifold model provides us with a way of regularizing the learning machine, so as to reduce the generalization error, therefore mitigate overfiting. Two different overfiting-preventing approaches are proposed, one from the perspective of data variation, the other from capacity/complexity control. In the first approach, the learning machine is encouraged to make decisions that vary smoothly for data points in local neighborhoods on the manifold. In the second approach, a graph adjacency matrix is derived for the manifold, and the learned features are encouraged to be aligned with the principal components of this adjacency matrix. Experimental results on benchmark datasets are demonstrated, showing an obvious advantage of the proposed approaches when the training set is small.
Stochastic optimization makes it possible to track a slowly varying subspace underlying streaming data. By approximating local neighborhoods using affine subspaces, a slowly varying manifold can be efficiently tracked as well, even with corrupted and noisy data. The more the local neighborhoods, the better the approximation, but the higher the computational complexity. A multiscale approximation scheme is proposed, where the local approximating subspaces are organized in a tree structure. Splitting and merging of the tree nodes then allows efficient control of the number of neighbourhoods. Deviation (of each datum) from the learned model is estimated, yielding a series of statistics for anomaly detection. This framework extends the classical {\em changepoint detection} technique, which only works for one dimensional signals. Simulations and experiments highlight the robustness and efficacy of the proposed approach in detecting an abrupt change in an otherwise slowly varying low-dimensional manifold.
Resumo:
Mitotic genome instability can occur during the repair of double-strand breaks (DSBs) in DNA, which arise from endogenous and exogenous sources. Studying the mechanisms of DNA repair in the budding yeast, Saccharomyces cerevisiae has shown that Homologous Recombination (HR) is a vital repair mechanism for DSBs. HR can result in a crossover event, in which the broken molecule reciprocally exchanges information with a homologous repair template. The current model of double-strand break repair (DSBR) also allows for a tract of information to non-reciprocally transfer from the template molecule to the broken molecule. These “gene conversion” events can vary in size and can occur in conjunction with a crossover event or in isolation. The frequency and size of gene conversions in isolation and gene conversions associated with crossing over has been a source of debate due to the variation in systems used to detect gene conversions and the context in which the gene conversions are measured.
In Chapter 2, I use an unbiased system that measures the frequency and size of gene conversion events, as well as the association of gene conversion events with crossing over between homologs in diploid yeast. We show mitotic gene conversions occur at a rate of 1.3x10-6 per cell division, are either large (median 54.0kb) or small (median 6.4kb), and are associated with crossing over 43% of the time.
DSBs can arise from endogenous cellular processes such as replication and transcription. Two important RNA/DNA hybrids are involved in replication and transcription: R-loops, which form when an RNA transcript base pairs with the DNA template and displaces the non-template DNA strand, and ribonucleotides embedded into DNA (rNMPs), which arise when replicative polymerase errors insert ribonucleotide instead of deoxyribonucleotide triphosphates. RNaseH1 (encoded by RNH1) and RNaseH2 (whose catalytic subunit is encoded by RNH201) both recognize and degrade the RNA in within R-loops while RNaseH2 alone recognizes, nicks, and initiates removal of rNMPs embedded into DNA. Due to their redundant abilities to act on RNA:DNA hybrids, aberrant removal of rNMPs from DNA has been thought to lead to genome instability in an rnh201Δ background.
In Chapter 3, I characterize (1) non-selective genome-wide homologous recombination events and (2) crossing over on chromosome IV in mutants defective in RNaseH1, RNaseH2, or RNaseH1 and RNaseH2. Using a mutant DNA polymerase that incorporates 4-fold fewer rNMPs than wild type, I demonstrate that the primary recombinogenic lesion in the RNaseH2-defective genome is not rNMPs, but rather R-loops. This work suggests different in-vivo roles for RNaseH1 and RNaseH2 in resolving R-loops in yeast and is consistent with R-loops, not rNMPs, being the the likely source of pathology in Aicardi-Goutières Syndrome patients defective in RNaseH2.
Resumo:
Variation of the d13C of living (Rose Bengal stained) deep-sea benthic foraminifera is documented from two deep-water sites (~2430 and ~3010 m) from a northwest Atlantic Ocean study area 275 km south of Nantucket Island. The carbon isotopic data of Hoeglundina elegans and Uvigerina peregrina from five sets of Multicorer and Soutar Box Core samples taken over a 10-month interval (March, May, July, and October 1996 and January 1997) are compared with an 11.5 month time series of organic carbon flux to assess the effect of organic carbon flux on the carbon isotopic composition of dominant taxa. Carbon isotopic data of Hoeglundina elegans at 3010 m show 0.3 per mil lower mean values following an organic carbon flux maximum resulting from a spring phytoplankton bloom. This d13C change following the spring bloom is suggested to be due to the presence of a phytodetritus layer on the seafloor and the subsequent depletion of d13C in the pore waters within the phytodetritus and overlying the sediment surface. Carbon isotopic data of H. elegans from the 2430 m site show an opposite pattern to that found at 3010 m with a d13C enrichment following the spring bloom. This different pattern may be due to spatial variation in phytodetritus deposition and resuspension or to a limited number of specimens recovered from the March 1996 cruise. The d13C of Uvigerina peregrina at 2430 m shows variation over the 10 month interval, but an analysis of variance shows that the variability is more consistent with core and subcore variability than with seasonal changes. The isotopic analyses are grouped into 100 µm size classes on the basis of length measurements of individual specimens to evaluate d13C ontogenetic changes of each species. The data show no consistent patterns between size classes in the d13C of either H. elegans or U. peregrina. These results suggest that variation in organic carbon flux does not preferentially affect particular size classes, nor do d13C ontogenetic changes exist within the >250 to >750 µm size range for these species at this locality. On the basis of the lack of ontogenetic changes a range of sizes of specimens from a sample can be used to reconstruct d13C in paleoceanographic studies. The prediction standard deviation, which is composed of cruise, core, subcore, and residual (replicate) variability, provides an estimate of the magnitude of variability in fossil d13C data; it is 0.27 per mil for H. elegans at 3010 m and 0.4 per mil for U. peregrina at the 2430 m site. Since these standard deviations are based on living specimens, they should be regarded as minimum estimates of variability for fossil data based on single specimen analyses. Most paleoceanographic reconstructions are based on the analysis of multiple specimens, and as a result, the standard error would be expected to be reduced for any particular sample. The reduced standard error resulting from the analysis of multiple specimens would result in the seasonal and spatial variability observed in this study having little impact on carbon isotopic records.