964 resultados para INTRACELLULAR TREHALOSE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well recognized that zinc is an essential trace element for all organisms, influencing growth and affecting the development and integrity of the immune system. It is also well known that the protective response against Trypanosoma cruzi depends on both innate and acquired immunity and for the control of the parasite load and host survival, the participation of special cells such natural killer (NK), T and B lymphocytes and macrophages are required. So the aims of this study were to evaluate the effects of zinc supplementation on the host`s immune response infected with T cruzi. Our data point in the direction that zinc supplementation triggered enhanced thymocyte and splenocyte proliferation as compared to unsupplied group of animals. It is also important to emphasize that interleukin-12 (IL-12) participates in the resistance to several intracellular pathogens including T cruzi. Our findings demonstrate an enhanced production of IL-12 during the acute phase of infection in zinc-supplied groups. So we conclude that zinc supplementation leads to an effective host`s immune response by up-modulating the host`s immune response, thus contributing in the reduction of blood parasites and the harmful pathogenic effects of the experimental Chagas` disease. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methionine is a component of one-carbon metabolism and a precursor of S-adenosylmethionine (SAM), the methyl donor for DNA methylation. When methionine intake is high, an increase of S-adenosylmethionine (SAM) is expected. DNA methyltransferases convert SAM to S-adenosylhomocysteine (SAH). A high intracellular SAH concentration could inhibit the activity of DNA methyltransferases. Therefore, high methionine ingestion could induce DNA damage and change the methylation pattern of tumor suppressor genes. This study investigated the genotoxicity of a methionine-supplemented diet. It also investigated the diet`s effects on glutathione levels, SAM and SAH concentrations and the gene methylation pattern of p53. Wistar rats received either a methionine-supplemented diet (2% methionine) or a control diet (0.3% methionine) for six weeks. The methionine-supplemented diet was neither genotoxic nor antigenotoxic to kidney cells, as assessed by the comet assay. However, the methionine-supplemented diet restored the renal glutathione depletion induced by doxorubicin. This fact may be explained by the transsulfuration pathway, which converts methionine to glutathione in the kidney. Methionine supplementation increased the renal concentration of SAH without changing the SAM/SAH ratio. This unchanged profile was also observed for DNA methylation at the promoter region of the p53 gene. Further studies are necessary to elucidate this diet`s effects on genomic stability and DNA methylation. (C) 2011 Elsevier ay. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Galectin-1 (Gal-1) and galectin-3 (Gal-3) exhibit profound but unique immunomodulatory activities in animals but their molecular mechanisms are incompletely understood. Early studies suggested that Gal-1 inhibits leukocyte function by inducing apoptotic cell death and removal, but recent studies show that some galectins induce exposure of the common death signal phosphatidylserine (PS) independently of apoptosis. In tfhis study, we report that Gal-3, but not Gal-1, induces both PS exposure and apoptosis in primary activated human T cells, whereas both Gal-1 and Gal-3 induce PS exposure in neutrophils in the absence of cell death. Gal-1 and Gal-3 bind differently to the surfaces of T cells and only Gal-3 mobilizes intracellular Ca(2+) in these cells, although Gal-1 and Gal-3 bind their respective T cell ligands with similar affinities. Although Gal-1 does not alter T cell viability, it induces IL-10 production and attenuates IFN-gamma production in activated T cells, suggesting a mechanism for Gal-1-mediated immunosuppression in vivo. These studies demonstrate that Gal-1 and Gal-3 induce differential responses in T cells and neutrophils, and identify the first factor, Gal-3, capable of inducing PS exposure with or without accompanying apoptosis in different leukocytes, thus providing a possible mechanism for galectin-mediated immunomodulation in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light conditions during mycelial growth are known to influence fungi in many ways. The effect of visible-light exposure during mycelial growth was investigated on conidial tolerance to UVB irradiation and wet heat of Metarhizium robertsii, an insect-pathogenic fungus. Two nutrient media and two light regimens were compared. Conidia were produced on (A) potato dextrose agar plus yeast extract medium (PDAY) (A1) under dark conditions or (A2) under continuous visible light (provided by two fluorescent lamps with intensity 5.4 W m-2). For comparison, the fungus was also produced on (B) minimal medium (MM) under continuous-dark incubation, which is known to produce conidia with increased tolerance to heat and UVB radiation. The UVB tolerances of conidia produced on PDAY under continuous visible light were twofold higher than conidia produced on PDAY medium under dark conditions, and this elevated UVB tolerance was similar to that of conidia produced on MM in the dark. The heat tolerance of conidia produced under continuous light was, however, similar to that of conidia produced on MM or PDAY in the dark. Conidial yield on PDAY medium was equivalent when the fungus was grown either under continuous-dark or under continuous-light conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P>The aim of this study was to evaluate a possible synergism between melatonin and meloxicam in up-regulating the immune response in male Wistar rats infected with Trypanosoma cruzi during immunosuppression phenomenon, which characterizes the acute phase of the Chagas` disease. Male Wistar rats were infected with the Y strain of T. cruzi. Experiments were performed on 7, 14 and 21 days post-infection. Several immunological parameters were evaluated including gamma-interferon (IFN-gamma), interleukin-2 (IL-2), nitric oxide (NO) and prostaglandin E(2) (PGE(2)). The combined treatment with melatonin and meloxicam significantly enhanced the release of IL-2 and INF-gamma into animals` serum, when compared with the infected control groups during the course of infection. Furthermore, the blockade of PGE(2) synthesis and the increased release of NO by macrophage cells from T. cruzi-infected animals contributed to regulate the production of Th1 subset cytokines significantly reducing the parasitaemia in animals treated with the combination of both substances. Therefore, our results suggest that the association of melatonin and meloxicam was more effective in protecting animals against the harmful actions of T. cruzi infection as compared with the treatments of meloxicam or melatonin alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neospora caninum is an Apicomplexan protozoan that has the dog as a definitive host and cattle (among other animals) as intermediate hosts. It causes encephalopathy in dogs and abortion in cows, with significant loss in worldwide livestock. As any Apicomplexan, the parasite invades the cells using proteins contained in the phylum-specific organelles, like the micronemes, rhoptries and dense granules. The aim of this study was the characterization of a homologue (denominated NcMIC2-like1) of N. caninum thrombospondin-related anonymous protein (NcMIC2), a micronemal protein previously shown to be involved in the attachment and connection with the intracellular motor responsible for the active process of invasion. A polyclonal antiserum raised against the recombinant NcMIC2-like1 functional core (thrombospondin and integrin domains) recognized the native form of NcMIC2-like1, inhibited the in vitro invasion process and localized NcMIC2-like1 at the apical complex of the parasite by confocal immunofluorescence, indicating its micronemal localization. The new molecule, NcMIC2-like1, has features that differentiates it from NcMIC2 in a substantial way to be considered a homologue dagger.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work deals with improving the production and stabilization of lipases from Cercospora kikuchii. Maximum enzyme production (9.384 U/ml) was obtained after 6 days in a medium supplemented with 2% soybean oil. The lipases were spray dried with different adjuvants, and their stability was studied. The residual enzyme activity after drying with 10% (w/v) of lactose, b- cyclodextrin, maltodextrin, mannitol, gum arabic, and trehalose ranged from 63 to 100%. The enzyme activity was lost in the absence of adjuvants. Most of the adjuvants used kept up at least 50% of the enzymatic activity at 5 degrees C and 40% at 25 degrees C after 8 months. The lipase dried with 10% of beta-cyclodextrin retained 72% of activity at 5 degrees C. Lipases were separated by butyl-sepharose column into 4 pools, and pool 4 was partially purified (33.1%; 269.5 U/mg protein). This pool was also spray dried in maltodextrin DE10, and it maintained 100% of activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a complex neurological disease that affects the central nervous system (CNS) resulting in debilitating neuropathology. Pathogenesis is primarily defined by CNS inflammation and demyelination of nerve axons. Methionine synthase reductase (MTRR) is an enzyme that catalyzes the remethylation of homocysteine (Hcy) to methionine via cobalamin and folate dependant reactions. Cobalamin acts as an intermediate methyl carrier between methylenetetrahydrofolate reductase (MTHFR) and Hcy. MTRR plays a critical role in maintaining cobalamin in an active form and is consequently an important determinant of total plasma Hcy (pHcy) concentrations. Elevated intracellular pHcy levels have been suggested to play a role in CNS dysfunction, neurodegenerative, and cerebrovascular diseases. Our investigation entailed the genotyping of a cohort of 140 cases and matched controls for MTRR and MTHFR, by restriction length polymorphism (RFLP) techniques. Two polymorphisms: MTRR A66G and MTHFR A1298C were investigated in an Australian age and gender matched case-control study. No significant allelic frequency difference was observed between cases and controls at the α = 0.05 level (MTRR χ^2 = 0.005, P = 0.95, MTHFR χ^2 = 1.15, P = 0.28). Our preliminary findings suggest no association between the MTRR A66G and MTHFR A1298C polymorphisms and MS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intense exercise stimulates the systemic release of a variety of factors that alter neutrophil surface receptor expression and functional activity. These alterations may influence resistance to infection after intense exercise. The aim of this study was to examine the influence of exercise intensity on neutrophil receptor expression, degranulation (measured by plasma and intracellular myeloperoxidase concentrations), and respiratory burst activity. Ten well-trained male runners ran on a treadmill for 60 min at 60% [moderate-intensity exercise (MI)] and 85% maximal oxygen consumption [high-intensity exercise (HI)]. Blood was drawn immediately before and after exercise and at 1 h postexercise. Immediately after HI, the expression of the neutrophil receptor CD16 was significantly below preexercise values (P < 0.01), whereas MI significantly reduced CD35 expression below preexercise values (P < 0.05). One hour after exercise at both intensities, there was a significant decline in CD11b expression (P < 0.05) and a further decrease in CD16 expression compared with preexercise values (P < 0.01). CD16 expression was lower 1 h after HI than 1 h after MI (P < 0.01). Immediately after HI, intracellular myeloperoxidase concentration was less than preexercise values (P < 0.01), whereas plasma myeloperoxidase concentration was greater (P < 0.01), indicating that HI stimulated neutrophil degranulation. Plasma myeloperoxidase concentration was higher immediately after HI than after MI (P < 0.01). Neutrophil respiratory burst activity increased after HI (P < 0.01). In summary, both MI and HI reduced neutrophil surface receptor expression. Although CD16 expression was reduced to a greater extent after HI, this reduction did not impair neutrophil degranulation and respiratory burst activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous invertebrate species form long lasting symbioses with bacteria (Buchner, 1949; Buchner, 1965). One of the most common of these bacterial symbionts is Wolbachia pipientis, which has been estimated to infect anywhere from 15–75% of all insect species (Werren et al., 1995a; West et al., 1998; Jeyaprakash and Hoy, 2000; Werren and Windsor, 2000) as well as many species of arachnids, terrestrial crustaceans and filarial nematodes (O’Neill et al., 1997a; Bandi et al., 1998). In most arthropod associations, Wolbachia act as reproductive parasites manipulating the reproduction of their hosts to enhance their own vertical transmission. There appears to be little direct fitness cost to the infected host besides the costs arising from the reproductive manipulations. However instances have been reported where Wolbachia can be either deleterious (Min and Benzer, 1997; Bouchon et al., 1998) or beneficial (Girin and Boultreau, 1995; Stolk and Stouthamer, 1995; Wade and Chang, 1995; Vavre et al., 1999b; Dedeine et al., 2001) to their hosts. Wolbachia were first described as intracellular Rickettsia-like organisms (RLOs), infecting the gonad cells of the mosquito, Culex pipiens (Hertig and Wolbach, 1924), and were later named 'Wolbachia pipientis' (Hertig, 1936). It was not until the work of Yen and Barr (Yen and Barr, 1971; Yen and Barr, 1973) that Wolbachia were implicated in causing crossing incompatibilities between different mosquito populations (Laven, 1951; Ghelelovitch, 1952). When polymerase chain reaction (PCR) diagnostics for Wolbachia became available, it became clear that this agent was both extremely widespread and also responsible for a range of different reproductive phenotypes in the different hosts it infected (O’Neill et al., 1992; Rousset et al., 1992; Stouthamer et al., 1993). The most common of these are cytoplasmic incompatibility, inducing parthenogenesis, overriding host sex-determination, and male-killing (O’Neill et al., 1997a). As of the time of this writing, more than 450 different Wolbachia strains with unique gene sequences, different phenotypes, and infecting different hosts have been deposited in GenBank and the Wolbachia host database (http://www.wolbachia.sols. uq.edu.au).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wolbachia are maternally inherited intracellular α-Proteobacteria found in numerous arthropod and filarial nematode species [1, 2 and 3]. They influence the biology of their hosts in many ways. In some cases, they act as obligate mutualists and are required for the normal development and reproduction of the host [4 and 5]. They are best known, however, for the various reproductive parasitism traits that they can generate in infected hosts. These include cytoplasmic incompatibility (CI) between individuals of different infection status, the parthenogenetic production of females, the selective killing of male embryos, and the feminization of genetic males [1 and 2]. Wolbachia infections of Drosophila melanogaster are extremely common in both wild populations and long-term laboratory stocks [6, 7 and 8]. Utilizing the newly completed genome sequence of Wolbachia pipientis wMel [9], we have identified a number of polymorphic markers that can be used to discriminate among five different Wolbachia variants within what was previously thought to be the single clonal infection of D. melanogaster. Analysis of long-term lab stocks together with wild-caught flies indicates that one of these variants has replaced the others globally within the last century. This is the first report of a global replacement of a Wolbachia strain in an insect host species. The sweep is at odds with current theory that cannot explain how Wolbachia can invade this host species given the observed cytoplasmic incompatibility characteristics of Wolbachia infections in D. melanogaster in the field [6].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wolbachia pipientis is an obligate intracellular endosymbiont of a range of arthropod species. The microbe is best known for its manipulations of host reproduction that include inducing cytoplasmic incompatibility, parthenogenesis, feminization, and male-killing. Like other vertically transmitted intracellular symbionts, Wolbachiarsquos replication rate must not outpace that of its host cells if it is to remain benign. The mosquito Aedes albopictus is naturally infected both singly and doubly with different strains of Wolbachia pipientis. During diapause in mosquito eggs, no host cell division is believed to occur. Further development is triggered only by subsequent exposure of the egg to water. This study uses diapause in Wolbachia-infected Aedes albopictus eggs to determine whether symbiont replication slows or stops when host cell division ceases or whether it continues at a low but constant rate. We have shown that Wolbachia densities in eggs are greatest during embryonation and then decline throughout diapause, suggesting that Wolbachia replication is dependent on host cell replication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wolbachia are maternally inherited intracellular bacteria that infect a wide range of arthropods and nematodes and are associated with various reproductive abnormalities in their hosts. Insect-associated Wolbachia form a monophyletic clade in the α-Proteobacteria and recently have been separated into two supergroups (A and B) and 19 groups. Our recent polymerase chain reaction (PCR) survey using wsp specific primers indicated that various strains of Wolbachia were present in mosquitoes collected from Southeast Asia. Here, we report the phylogenetic relationship of the Wolbachia strains found in these mosquitoes using wsp gene sequences. Our phylogenetic analysis revealed eight new Wolbachia strains, five in the A supergroup and three in the B supergroup. Most of the Wolbachia strains present in Southeast Asian mosquitoes belong to the established Mors, Con, and Pip groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genome sizes of six different Wolbachia strains from insect and nematode hosts have been determined by pulsed-field gel electrophoresis of purified DNA both before and after digestion with rare-cutting restriction endonucleases. Enzymes SmaI, ApaI, AscI, and FseI cleaved the studied Wolbachia strains at a small number of sites and were used for the determination of the genome sizes of wMelPop, wMel, and wMelCS (each 1.36 Mb), wRi (1.66 Mb), wBma (1.1 Mb), and wDim (0.95 Mb). The Wolbachia genomes studied were all much smaller than the genomes of free-living bacteria such as Escherichia coli (4.7 Mb), as is typical for obligate intracellular bacteria. There was considerable genome size variability among Wolbachia strains, especially between the more parasitic A group Wolbachia infections of insects and the mutualistic C and D group infections of nematodes. The studies described here found no evidence for extrachromosomal plasmid DNA in any of the strains examined. They also indicated that the Wolbachia genome is circular.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Old and New World phlebotomine sand fly species were screened for infection with Wolbachia, intracellular bacterial endosymbionts found in many arthropods and filarial nematodes. Of 53 samples representing 15 species, nine samples of four species were found positive for Wolbachia by polymerase chain reaction amplification using primers for the Wolbachia surface protein (wsp) gene. Five of the wsp gene fragments from four species were cloned, sequenced, and used for phylogenetic analysis. These wsp sequences were placed in three different clades within the arthropod associated Wolbachia (groups A and B), suggesting that Wolbachia has infected sand flies on more than one occasion. Two distantly related sand fly species, Lutzomyia (Psanthyromyia) shannoni (Dyar) and Lutzomyia (Nyssomyia) whitmani (Antunes & Coutinho), infected with an identical Wolbachia strain suggest a very recent horizontal transmission.