982 resultados para IMMUNE TOLERANCE INDUCTION
Resumo:
Background: The dust mite Blomia tropicalis is an important source of aeroallergens in tropical areas. Although a mouse model for B. tropicalis extract (BtE)-induced asthma has been described, no study comparing different mouse strains in this asthma model has been reported. The relevance and reproducibility of experimental animal models of allergy depends on the genetic background of the animal, the molecular composition of the allergen and the experimental protocol. Objectives: This work had two objectives. The first was to study the anti-B. tropicalis allergic responses in different mouse strains using a short-term model of respiratory allergy to BtE. This study included the comparison of the allergic responses elicited by BtE with those elicited by ovalbumin in mice of the strain that responded better to BtE sensitization. The second objective was to investigate whether the best responder mouse strain could be used in an experimental model of allergy employing relatively low BtE doses. Methods: Groups of mice of four different syngeneic strains were sensitized subcutaneously with 100 mu g of BtE on days 0 and 7 and challenged four times intranasally, at days 8, 10, 12, and 14, with 10 mu g of BtE. A/J mice, that were the best responders to BtE sensitization, were used to compare the B. tropicalis-specific asthma experimental model with the conventional experimental model of ovalbumin (OVA)-specific asthma. A/J mice were also sensitized with a lower dose of BtE. Results: Mice of all strains had lung inflammatory-cell infiltration and increased levels of anti-BtE IgE antibodies, but these responses were significantly more intense in A/J mice than in CBA/J, BALB/c or C57BL/6J mice. Immunization of A/J mice with BtE induced a more intense airway eosinophil influx, higher levels of total IgE, similar airway hyperreactivity to methacholine but less intense mucous production, and lower levels of specific IgE, IgG1 and IgG2 antibodies than sensitization with OVA. Finally, immunization with a relatively low BtE dose (10 mu g per subcutaneous injection per mouse) was able to sensitize A/J mice, which were the best responders to high-dose BtE immunization, for the development of allergy-associated immune and lung inflammatory responses. Conclusions: The described short-term model of BtE-induced allergic lung disease is reproducible in different syngeneic mouse strains, and mice of the A/J strain was the most responsive to it. In addition, it was shown that OVA and BtE induce quantitatively different immune responses in A/J mice and that the experimental model can be set up with low amounts of BtE.
Resumo:
The present study evaluated the effect of aflatoxin B(1) (AFB(1)) and fumonisin B(1) (FB(1)) either alone, or in association, on rat primary hepatocyte cultures. Cell viability was assessed by flow cytometry after propidium iodine intercalation. DNA fragmentation and apoptosis were assessed by agarose gel electrophoresis and acridine orange and ethidium bromide staining. At the concentrations of AFB(1) and FB(1) used, the toxins did not decrease cell viability, but did induce apoptosis in a concentration and time-dependent manner.
Resumo:
The murine model of T. cruzi infection has provided compelling evidence that development of host resistance against intracellular protozoans critically depends on the activation of members of the Toll-like receptor (TLR) family via the MyD88 adaptor molecule. However, the possibility that TLR/MyD88 signaling pathways also control the induction of immunoprotective CD8(+) T cell-mediated effector functions has not been investigated to date. We addressed this question by measuring the frequencies of IFN-gamma secreting CD8(+) T cells specific for H-2K(b)-restricted immunodominant peptides as well as the in vivo Ag-specific cytotoxic response in infected animals that are deficient either in TLR2, TLR4, TLR9 or MyD88 signaling pathways. Strikingly, we found that T. cruzi-infected Tlr2(-/-), Tlr4(-/-), Tlr9(-/-) or Myd88(-/-) mice generated both specific cytotoxic responses and IFN-gamma secreting CD8(+) T cells at levels comparable to WT mice, although the frequency of IFN-gamma(+)CD4(+) cells was diminished in infected Myd88(-/-) mice. We also analyzed the efficiency of TLR4-driven immune responses against T. cruzi using TLR4-deficient mice on the C57BL genetic background (B6 and B10). Our studies demonstrated that TLR4 signaling is required for optimal production of IFN-gamma, TNF-alpha and nitric oxide (NO) in the spleen of infected animals and, as a consequence, Tlr4(-/-) mice display higher parasitemia levels. Collectively, our results indicate that TLR4, as well as previously shown for TLR2, TLR9 and MyD88, contributes to the innate immune response and, consequently, resistance in the acute phase of infection, although each of these pathways is not individually essential for the generation of class I-restricted responses against T. cruzi.
Resumo:
Background: Progress towards the development of a malaria vaccine against Plasmodium vivax, the most widely distributed human malaria parasite, will require a better understanding of the immune responses that confer clinical protection to patients in regions where malaria is endemic. Methods: Glutathione S-transferase (GST) and GST-fusion proteins representing the N-terminus of the merozoite surface protein 1 of P. vivax, PvMSP1-N, and the C-terminus, PvMSP1-C, were covalently coupled to BioPlex carboxylated beads. Recombinant proteins and coupled beads were used, respectively, in ELISA and Bioplex assays using immune sera of P. vivax patients from Brazil and PNG to determine IgG and subclass responses. Concordances between the two methods in the seropositivity responses were evaluated using the Kappa statistic and the Spearman's rank correlation. Results: The results using this methodology were compared with the classical microtitre enzyme-linked immnosorbent assay ( ELISA), showing that the assay was sensitive, reproducible and had good concordance with ELISA; yet, further research into different statistical analyses seems desirable before claiming conclusive results exclusively based on multiplex assays. As expected, results demonstrated that PvMSP1 was immunogenic in natural infections of patients from different endemic regions of Brazil and Papua New Guinea ( PNG), and that age correlated only with antibodies against the C-terminus part of the molecule. Furthermore, the IgG subclass profiles were different in these endemic regions having IgG3 predominantly recognizing PvMSP1 in Brazil and IgG1 predominantly recognizing PvMSP1 in PNG. Conclusions: This study validates the use of the multiplex assay to measure naturally-acquired IgG antibodies against the merozoite surface protein 1 of P. vivax.
Resumo:
As a contribution towards detecting the genetic effects of low doses of genotoxic physical agents, this paper deals with the consequences of low-dose X-rays in the Aspergillus nidulans genome. The irradiation doses studied were those commonly used in dental clinics (1-5 cGy). Even very low doses promoted increased mitotic crossing-over frequencies in diploid strains heterozygous for several genetic markers including the ones involved in DNA repair and recombination mechanisms. Genetic markers of several heterozygous strains were individu`ally analyzed disclosing that some markers were especially sensitive to the treatments. These markers should be chosen as bio-indicators in the homozygotization index assay to better detect the recombinogenic/carcinogenic genomic effects of low-dose X-rays.
Resumo:
Background: A family of hydrophilic acylated surface (HASP) proteins, containing extensive and variant amino acid repeats, is expressed at the plasma membrane in infective extracellular (metacyclic) and intracellular (amastigote) stages of Old World Leishmania species. While HASPs are antigenic in the host and can induce protective immune responses, the biological functions of these Leishmania-specific proteins remain unresolved. Previous genome analysis has suggested that parasites of the sub-genus Leishmania (Viannia) have lost HASP genes from their genomes. Methods/Principal Findings: We have used molecular and cellular methods to analyse HASP expression in New World Leishmania mexicana complex species and show that, unlike in L. major, these proteins are expressed predominantly following differentiation into amastigotes within macrophages. Further genome analysis has revealed that the L. (Viannia) species, L. (V.) braziliensis, does express HASP-like proteins of low amino acid similarity but with similar biochemical characteristics, from genes present on a region of chromosome 23 that is syntenic with the HASP/SHERP locus in Old World Leishmania species and the L. (L.) mexicana complex. A related gene is also present in Leptomonas seymouri and this may represent the ancestral copy of these Leishmania-genus specific sequences. The L. braziliensis HASP-like proteins (named the orthologous (o) HASPs) are predominantly expressed on the plasma membrane in amastigotes and are recognised by immune sera taken from 4 out of 6 leishmaniasis patients tested in an endemic region of Brazil. Analysis of the repetitive domains of the oHASPs has shown considerable genetic variation in parasite isolates taken from the same patients, suggesting that antigenic change may play a role in immune recognition of this protein family. Conclusions/Significance: These findings confirm that antigenic hydrophilic acylated proteins are expressed from genes in the same chromosomal region in species across the genus Leishmania. These proteins are surface-exposed on amastigotes (although L. (L.) major parasites also express HASPB on the metacyclic plasma membrane). The central repetitive domains of the HASPs are highly variant in their amino acid sequences, both within and between species, consistent with a role in immune recognition in the host.
Resumo:
Mixed formula supplements are very popular among recreational and professional weightlifters. They are usually known as PAKs and they are supposed to have a synergistic effect of their different nutrients. The purpose of this study was to determine the effects of chronic (4 weeks) PAKS supplementation in combination with strength training on body composition, immune status and performance measures in recreationally trained individuals with or without PAKs supplementation. Methods: Twelve male subjects (Placebo n = 6 and PAKs supplement n = 6) were recruited for this study. The body composition, one maximum strength repetition tests and immune status were assessed before and after 4 week supplementation. Our data showed that, 4 week PAK supplementation associated with strength exercise not was effective in change strength than compared with placebo group. However, we observed that, PAK supplement was able to improve immune status and reduced body composition when compared with placebo group. These results indicate that, a mixed formula supplement is able to improve immune status and body composition but not maximum strength in recreational strength trained subjects in a 4 weeks period.
Resumo:
Thymic CD4(+)CD25(+) cells play an important role in immune regulation and are continuously developed in the thymus as an independent lineage. How these cells are generated, what are their multiple pathways of suppressive activity and which are their specific markers are questions that remain unanswered. To identify molecules involved in the function and development of human CD4(+)CD25(+) T regulatory cells we targeted thymic CD4(+)CD25(+) cells by peptide phage display. A phage library containing random peptides was screened ex vivo for binding to human thymic CD4(+)CD25(+) T cells. After four rounds of selection on CD4(+)CD25(+) enriched populations of thymocytes, we sequenced several phage displayed peptides and selected one with identity to the Vitamin D Receptor (VDR). We confirmed the binding of the VDR phage to active Vitamin D in vitro, as well as the higher expression of VDR in CD4(+)CD25(+) cells. We suggest that differential expression of VDR on natural Tregs may be related to the relevance of Vitamin D in function and ontogeny of these cells.
Resumo:
Background: Schistosomiasis continues to be a significant public health problem. This disease affects 200 million people worldwide and almost 800 million people are at risk of acquiring the infection. Although vaccine development against this disease has experienced more failures than successes, encouraging results have recently been obtained using membrane-spanning protein antigens from the tegument of Schistosoma mansoni. Our group recently identified Sm29, another antigen that is present at the adult worm tegument surface. In this study, we investigated murine cellular immune responses to recombinant (r) Sm29 and tested this protein as a vaccine candidate. Methods and Findings: We first show that Sm29 is located on the surface of adult worms and lung-stage schistosomula through confocal microscopy. Next, immunization of mice with rSm29 engendered 51%, 60% and 50% reduction in adult worm burdens, in intestinal eggs and in liver granuloma counts, respectively (p<0.05). Protective immunity in mice was associated with high titers of specific anti-Sm29 IgG1 and IgG2a and elevated production of IFN-gamma, TNF-alpha and IL-12, a typical Th1 response. Gene expression analysis of worms recovered from rSm29 vaccinated mice relative to worms from control mice revealed a significant (q<0.01) down-regulation of 495 genes and up-regulation of only 22 genes. Among down-regulated genes, many of them encode surface antigens and proteins associated with immune signals, suggesting that under immune attack schistosomes reduce the expression of critical surface proteins. Conclusion: This study demonstrates that Sm29 surface protein is a new vaccine candidate against schistosomiasis and suggests that Sm29 vaccination associated with other protective critical surface antigens is the next logical strategy for improving protection.
Resumo:
Nunes, JA, Crewther, BT, Ugrinowitsch, C, Tricoli, V, Viveiros, L, de Rose Jr, D, and Aoki, MS. Salivary hormone and immune responses to three resistance exercise schemes in elite female athletes J Strength Cond Res 25(8): 2322-2327, 2011-This study examined the salivary hormone and immune responses of elite female athletes to 3 different resistance exercise schemes. Fourteen female basketball players each performed an endurance scheme (ES-4 sets of 12 reps, 60% of 1 repetition maximum (1RM) load, 1-minute rest periods), a strength-hypertrophy scheme (SHS-1 set of 5RM, 1 set of 4RM, 1 set of 3RM, 1 set of 2RM, and 1set of 1RM with 3-minute rest periods, followed by 3 sets of 10RM with 2-minute rest periods) and a power scheme (PS-3 sets of 10 reps, 50% 1RM load, 3-minute rest periods) using the same exercises (bench press, squat, and biceps curl). Saliva samples were collected at 07:30 hours, pre-exercise (Pre) at 09:30 hours, postexercise (Post), and at 17:30 hours. Matching samples were also taken on a nonexercising control day. The samples were analyzed for testosterone, cortisol (C), and immunoglobulin A concentrations. The total volume of load lifted differed among the 3 schemes (SHS > ES > PS, p < 0.05). Postexercise C concentrations increased after all schemes, compared to control values (p < 0.05). In the SHS, the postexercise C response was also greater than pre-exercise data (p < 0.05). The current findings confirm that high-volume resistance exercise schemes can stimulate greater C secretion because of higher metabolic demand. In terms of practical applications, acute changes in C may be used to evaluate the metabolic demands of different resistance exercise schemes, or as a tool for monitoring training strain.
Resumo:
Active lymphocytes (LY) and macrophages (M Phi) are involved in the pathophysiology of rheumatoid arthritis (RA) Due to its anti-inflammatory effect. physical exercise may be beneficial in RA by acting on the immune system (IS) Thus, female Wistar rats with type II collagen-induced arthritis (CIA) were submitted to swimming training (6 weeks. 5 days/week. 60 min/day) and some biochemical and immune parameters, such as the metabolism of glucose and glutamine and function of LY and M. were evaluated In addition, plasma levels of some hormones and of interleukin-2 (IL-2) were also determined Results demonstrate that CIA increased lymphocyte proliferation (1.9- and 1 7-fold, respectively, in response to concanavalin A (ConA) and lipopolysaccharide (LPS)), as well as macrophage H(2)O(2) production (1 6-fold), in comparison to control Exercise training prevented the activation of immune cells, induced by CIA. and established a pattern of substrate utilization similar to that described as normal for these cells. Exercise also promoted an elevation of plasma levels of corticosterone (22 2%), progesterone (1 7-fold) and IL-2 (2 6-fold) Our data suggest that chronic exercise is able to counterbalance the effects of CIA on cells of the IS. reinforcing the proposal that the benefits of exercise may not be restricted to aerobic capacity and/or strength improvement Copyright (C) 2010 John Wiley & Sons, Ltd
Resumo:
This investigation examined the impact of a 17-d training period (that included basketball-specific training, sprints, intermittent running exercises, and weight training, prior to an international championship competition) on salivary immunoglobulin A (SIgA) levels in 10 subjects (athletes and staff members) from a national basketball team, as a biomarker for mucosal immune defence. Unstimulated saliva samples were collected at rest at the beginning of the preparation for the Pan American Games and 1 d before the first game. The recovery interval from the last bout of exercise was 4 h. The SIgA level was measured using enzyme-linked immunosorbent assay and expressed as absolute concentrations, secretion rate, and SIgA level relative to total protein. The decrease in SIgA levels following training was greater in athletes than in support staff; however, no significant differences between the two groups were detected. A decrease in SIgA level, regardless of the method used to express IgA results, was verified for athletes. Only one episode of upper respiratory tract illness symptoms was reported, and it was not associated with changes in SIgA levels. In summary, a situation of combined stress for an important championship was found to decrease the level of SIgA-mediated immune protection at the mucosal surface in team members, with greater changes observed in the athletes.
Resumo:
Objective: To analyse the effects of strength training (ST) in walking capacity in patients with intermittent claudication (IC) compared with walking training (WT) effects. Methods. Thirty patients with IC were randomized into ST and WT. Both groups trained twice a week for 12 weeks at the same rate of perceived exertion. ST consisted of three sets of 10 repetitions of whole body exercises. WT consisted of 15 bouts of 2-minute walking. Before and after the training program walking capacity, peak VO(2), VO(2) at the first stage of treadmill test, ankle brachial index, ischemic window, and knee extension strength were measured. Results: ST improved initial claudication distance (358 +/- 224 vs 504 +/- 276 meters; P < .01), total walking distance (618 +/- 282 to 775 +/- 334 meters; P < .01), VO(2), at the first stage of treadmill test (9.7 +/- 2.6 vs 8.1 +/- 1.7 mL . kg(-1) . minute; P < .01), ischemic window (0.81 +/- 1.16 vs 0.43 +/- 0.47 mm Hg minute meters(-1); P = .04), and knee extension strength (19 +/- 9 vs 21 +/- 8 kg and 21 +/- 9 vs 23 +/- 9; P < .01). Strength increases correlated with the increase in initial claudication distance (r = 0.64; P = .01.) and with the decrease ill VO(2) measured at the first stage of the treadmill test (r = -0.52; P = .04 and r = -0.55; P = .03). Adaptations following ST were similar to the ones observed after WT; however, patients reported lower pain during ST than WT (P < .01). Conclusion: ST improves functional limitation similarly to WT but it produces lower pain, suggesting that this type of exercise could be useful and should be considered in patients with IC. (J Vase Surg 2010;51:89-95.)
Resumo:
Recent findings have indicated that creatine supplementation may affect glucose metabolism. This study aimed to examine the effects of creatine supplementation, combined with aerobic training, on glucose tolerance in sedentary healthy male. Subjects (n = 22) were randomly divided in two groups and were allocated to receive treatment with either creatine (CT) (similar to 10g .day over three months) or placebo (PT) (dextrose). Administration of treatments was double blind. Both groups underwent moderate aerobic training. An oral glucose tolerance test (OGTT) was performed and both fasting plasma insulin and the homeostasis model assessment (HOMA) index were assessed at the start, and after four, eight and twelve weeks. CT demonstrated significant decrease in OGTT area under the curve compared to PT (P = 0.034). There were no differences between groups or over time in fasting insulin or HOMA. The results suggest that creatine supplementation, combined with aerobic training, can improve glucose tolerance but does not affect insulin sensitivity, and may warrant further investigation with diabetic subjects.
Resumo:
Ticks are blood-feeding arthropods that secrete immunomodulatory molecules through their saliva to antagonize host inflammatory and immune responses. As dendritic cells (DCs) play a major role in host immune responses, we studied the effects of Rhipicephalus sanguineus tick saliva on DC migration and function. Bone marrow-derived immature DCs pre-exposed to tick saliva showed reduced migration towards macrophage inflammatory protein (MIP)-1 alpha, MIP-1 beta and regulated upon activation, normal T cell expressed and secreted (RANTES) chemokines in a Boyden microchamber assay. This inhibition was mediated by saliva which significantly reduced the percentage and the average cell-surface expression of CC chemokine receptor CCR5. In contrast, saliva did not alter migration of DCs towards MIP-3 beta, not even if the cells were induced for maturation. Next, we evaluated the effect of tick saliva on the activity of chemokines related to DC migration and showed that tick saliva per se inhibits the chemotactic function of MIP-1 alpha, while it did not affect RANTES, MIP-1 beta and MIP-3 beta. These data suggest that saliva possibly reduces immature DC migration, while mature DC chemotaxis remains unaffected. In support of this, we have analyzed the percentage of DCs on mice 48 h after intradermal inoculation with saliva and found that the DC turnover in the skin was reduced compared with controls. Finally, to test the biological activity of the saliva-exposed DCs, we transferred DCs pre-cultured with saliva and loaded with the keyhole limpet haemocyanin (KLH) antigen to mice and measured their capacity to induce specific T cell cytokines. Data showed that saliva reduced the synthesis of both T helper (Th)1 and Th2 cytokines, suggesting the induction of a non-polarised T cell response. These findings propose that the inhibition of DCs migratory ability and function may be a relevant mechanism used by ticks to subvert the immune response of the host. (c) 2007 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.