701 resultados para Hull


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methodology and results of full scale maneuvering trials for Riverine Support Patrol Vessel “RSPV”, built by COTECMAR for the Colombian Navy are presented. !is ship is equipped with a “Pump – Jet” propulsion system and the hull corresponds to a wide-hull with a high Beam – Draft ratio (B/T=9.5). Tests were based on the results of simulation of turning diameters obtained from TRIBON M3© design software, applying techniques of Design of Experiments “DOE”, to rationalize the number of runs in di"erent conditions of water depth, ship speed, and rudder angle. Results validate the excellent performance of this class of ship and show that turning diameter and other maneuvering characteristics improve with decreasing water depth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los requisitos cada vez más exigentes en cuanto a misiones, limitaciones operacionales y ambientales así como nuevas tecnologías, imponen permanentemente retos a los arquitectos navales para generar alternativas de buques y valorar su bondad en las primeras etapas del proyecto. Este es el caso de los Buques Patrulleros de Apoyo Fluvial Pesados PAF-P, que por requerimiento de la Armada Nacional de Colombia ha diseñado y construido COTECMAR. Los PAF-P, son buques fluviales cuya relación Manga-Calado excede la mayoría de los buques existentes (B/T=9,5), debido principalmente a las restricciones en el calado a consecuencia de la escasa profundidad de los ríos. Estos buques están equipados con sistemas de propulsión acimutales tipo “Pum-Jet”. Las particularidades del buque y del ambiente operacional, caracterizado por ríos tropicales con una variabilidad de profundidad dependiente del régimen de lluvias y sequía, así como la falta de canalización y la corriente, hacen que la maniobrabilidad y controlabilidad sean fundamentales para el cumplimiento de su misión; adicionalmente, no existen modelos matemáticos validados que permitan predecir en las primeras etapas del diseño la maniobrabilidad de este tipo de buques con los efectos asociados por profundidad. La presente tesis doctoral aborda el desarrollo de un modelo matemático para simulación de maniobrabilidad en aguas poco profundas de buques con relación manga-calado alta y con propulsores acimutales tipo “Pump-Jet”, cuyo chorro además de entregar el empuje necesario para el avance del buque, genera la fuerza de gobierno en función del ángulo de orientación del mismo, eliminando la necesidad de timones. El modelo matemático ha sido validado mediante los resultados obtenidos en las pruebas de maniobrabilidad a escala real del PAF-P, a través de la comparación de trayectorias, series temporales de las variables de estado más significativas y parámetros del círculo evolutivo como son diámetro de giro, diámetro táctico, avance y transferencia. El plan de pruebas se basó en técnicas de Diseño de Experimentos “DOE” para racionalizar el número de corridas en diferentes condiciones de profundidad, velocidad y orientación del chorro (ángulo de timón). En el marco de la presente investigación y para minimizar los errores por efectos ambientales y por inexactitud en los instrumentos de medición, se desarrolló un sistema de adquisición y procesamiento de datos de acuerdo con los lineamientos de ITTC. La literatura existente describe los efectos negativos de la profundidad en los parámetros de maniobrabilidad de buques convencionales (Efecto tipo S), principalmente las trayectorias descritas en los círculos evolutivos aumentan en la medida que disminuye la profundidad; no obstante, en buques de alta relación manga-calado, B/T=7,51 (Yoshimura, y otros, 1.988) y B/T=6,38 (Yasukawa, y otros, 1.995) ha sido reportado el efecto contrario (Efecto tipo NS Non Standart). Este último efecto sin embargo, ha sido observado mediante experimentación con modelos a escala pero no ha sido validado en pruebas de buques a escala real. El efecto tipo NS en buques dotados con hélice y timones, se atribuye al mayor incremento de la fuerza del timón comparativamente con las fuerzas del casco en la medida que disminuye la profundidad; en el caso de estudio, el fenómeno está asociado a la mejor eficiencia de la bomba de agua “Pump-Jet”, debido a la resistencia añadida en el casco por efecto de la disminución de la profundidad. Los resultados de las pruebas con buque a escala real validan el excelente desempeño de esta clase de buques, cumpliendo en exceso los criterios de maniobrabilidad existentes y muestran que el diámetro de giro y otras características de maniobrabilidad mejoran con la disminución de la profundidad en buques con alta relación manga-calado. ABSTRACT The increasingly demanding requirements in terms of missions, operational and environmental constraints as well as new technologies, constantly impose challenges to naval architects to generate alternatives and asses their performance in the early stages of design. That is the case of Riverine Support Patrol Vessel (RSPV), designed and built by COTECMAR for the Colombian Navy. RSPV are riverine ships with a Beam-Draft ratio exceeding most of existing ships (B/T=9,5), mainly due to the restrictions in draft as a result of shallow water environment. The ships are equipped with azimuthal propulsion system of the “Pump-Jet” type. The peculiarities of the ship and the operational environment, characterized by tropical rivers of variable depth depending on the rain and dry seasons, as well as the lack channels and the effect of water current, make manoeuvrability and controllability fundamental to fulfill its mission; on the other hand, there are not validated mathematical models available to predict the manoeuvrability of such ships with the associated water depth effects in the early stages of design. This dissertation addresses the development of a mathematical model for shallow waters’ manoeuvrability simulation of ships with high Beam-Draft ratio and azimuthal propulsion systems type “Pump-Jet”, whose stream generates the thrust required by the ship to advance and also the steering force depending on the orientation angle, eliminating the need of rudders. The mathematical model has been validated with the results of RSPV’s full scale manoeuvring tests, through a comparison of paths, time series of state variables and other parameters taken from turning tests, such as turning diameter, tactical diameter, advance and transfer. The test plan was developed applying techniques of Design of Experiments “DOE”, in order to rationalize the number of runs in different conditions of water depth, ship speed and jet stream orientation (rudder angle). A data acquisition and processing system was developed, following the guidelines of ITTC, as part of this research effort, in order to minimize errors by environmental effects and inaccuracy in measurement instruments, The negative effects of depth on manoeuvrability parameters for conventional ships (Effect Type S: the path described by the ship during turning test increase with decrease of water depth), has been documented in the open literature; however for wide-beam ships, B/T=7,51 (Yoshimura, y otros, 1.988) and B/T=6,38 (Yasukawa, y otros, 1.995) has been reported the opposite effect (Type NS). The latter effect has been observed thru model testing but until now had not been validated with full-scale results. In ships with propellers and rudders, type NS effect is due to the fact that increment of rudder force becomes larger than hull force with decrease of water depth; in the study case, the phenomenon is associated with better efficiency of the Pump-Jet once the vessel speed becomes lower, due to hull added resistance by the effect of the decrease of water depth. The results of full scale tests validates the excellent performance of this class of ships, fulfilling the manoeuvrability criteria in excess and showing that turning diameter and other parameters in high beam-draft ratio vessels do improve with the decrease of depth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a new category of CAD applications devoted to the definition and parameterization of hull forms, called programmed design. Programmed design relies on two prerequisites. The first one is a product model with a variety of types large enough to face the modeling of any type of ship. The second one is a design language dedicated to create the product model. The main purpose of the language is to publish the modeling algorithms of the application in the designer knowledge domain to let the designer create parametric model scripts. The programmed design is an evolution of the parametric design but it is not just parametric design. It is a tool to create parametric design tools. It provides a methodology to extract the design knowledge by abstracting a design experience in order to store and reuse it. Programmed design is related with the organizational and architectural aspects of the CAD applications but not with the development of modeling algorithms. It is built on top and relies on existing algorithms provided by a comprehensive product model. Programmed design can be useful to develop new applications, to support the evolution of existing applications or even to integrate different types of application in a single one. A three-level software architecture is proposed to make the implementation of the programmed design easier. These levels are the conceptual level based on the design language, the mathematical level based on the geometric formulation of the product model and the visual level based on the polyhedral representation of the model as required by the graphic card. Finally, some scenarios of the use of programmed design are discussed. For instance, the development of specialized parametric hull form generators for a ship type or a family of ships or the creation of palettes of hull form components to be used as parametric design patterns. Also two new processes of reverse engineering which can considerably improve the application have been detected: the creation of the mathematical level from the visual level and the creation of the conceptual level from the mathematical level. © 2012 Elsevier Ltd. All rights reserved. 1. Introduction

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis aims to introduce some fundamental concepts underlying option valuation theory including implementation of computational tools. In many cases analytical solution for option pricing does not exist, thus the following numerical methods are used: binomial trees, Monte Carlo simulations and finite difference methods. First, an algorithm based on Hull and Wilmott is written for every method. Then these algorithms are improved in different ways. For the binomial tree both speed and memory usage is significantly improved by using only one vector instead of a whole price storing matrix. Computational time in Monte Carlo simulations is reduced by implementing a parallel algorithm (in C) which is capable of improving speed by a factor which equals the number of processors used. Furthermore, MatLab code for Monte Carlo was made faster by vectorizing simulation process. Finally, obtained option values are compared to those obtained with popular finite difference methods, and it is discussed which of the algorithms is more appropriate for which purpose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents a mathematical method for producing hard-chine ship hulls based on a set of numerical parameters that are directly related to the geometric features of the hull and uniquely define a hull form for this type of ship. The term planing hull is used generically to describe the majority of hard-chine boats being built today. This article is focused on unstepped, single-chine hulls. B-spline curves and surfaces were combined with constraints on the significant ship curves to produce the final hull design. The hard-chine hull geometry was modeled by decomposing the surface geometry into boundary curves, which were defined by design constraints or parameters. In planing hull design, these control curves are the center, chine, and sheer lines as well as their geometric features including position, slope, and, in the case of the chine, enclosed area and centroid. These geometric parameters have physical, hydrodynamic, and stability implications from the design point of view. The proposed method uses two-dimensional orthogonal projections of the control curves and then produces three-dimensional (3-D) definitions using B-spline fitting of the 3-D data points. The fitting considers maximum deviation from the curve to the data points and is based on an original selection of the parameterization. A net of B-spline curves (stations) is then created to match the previously defined 3-D boundaries. A final set of lofting surfaces of the previous B-spline curves produces the hull surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing need of easy and affordable technologies to automatically generate virtual 3D models from their real counterparts. In particular, 3D human reconstruction has driven the creation of many clever techniques, most of them based on the visual hull (VH) concept. Such techniques do not require expensive hardware; however, they tend to yield 3D humanoids with realistic bodies but mediocre faces, since VH cannot handle concavities. On the other hand, structured light projectors allow to capture very accurate depth data, and thus to reconstruct realistic faces, but they are too expensive to use several of them. We have developed a technique to merge a VH-based 3D mesh of a reconstructed humanoid and the depth data of its face, captured by a single structured light projector. By combining the advantages of both systems in a simple setting, we are able to reconstruct realistic 3D human models with believable faces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a new method to automatically refine a facial disparity map obtained with standard cameras and under conventional illumination conditions by using a smart combination of traditional computer vision and 3D graphics techniques. Our system inputs two stereo images acquired with standard (calibrated) cameras and uses dense disparity estimation strategies to obtain a coarse initial disparity map, and SIFT to detect and match several feature points in the subjects face. We then use these points as anchors to modify the disparity in the facial area by building a Delaunay triangulation of their convex hull and interpolating their disparity values inside each triangle. We thus obtain a refined disparity map providing a much more accurate representation of the the subjects facial features. This refined facial disparity map may be easily transformed, through the camera calibration parameters, into a depth map to be used, also automatically, to improve the facial mesh of a 3D avatar to match the subjects real human features.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays increasing fuel prices and upcoming pollutant emission regulations are becoming a growing concern for the shipping industry worldwide. While fuel prices will keep rising in future years, the new International Convention for the Prevention of Pollution from Ships (MARPOL) and Sulphur Emissions Control Areas (SECA) regulations will forbid ships to use heavy fuel oils at certain situations. To fulfil with these regulations, the next step in the marine shipping business will comprise the use of cleaner fuels on board as well as developing new propulsion concept. In this work a new conceptual marine propulsion system is developed, based on the integration of diesel generators with fuel cells in a 2850 metric tonne of deadweight platform supply vessel. The efficiency of the two 250 kW methanol-fed Solid Oxide Fuel Cell (SOFC) system installed on board combined with the hydro dynamically optimized design of the hull of the ship will allow the ship to successfully operate at certain modes of operation while notably reduce the pollutant emissions to the atmosphere. Besides the cogeneration heat obtained from the fuel cell system will be used to answer different heating needs on board the vessel