853 resultados para Hierarchical logistic model
Resumo:
In this work, we propose a biologically inspired appearance model for robust visual tracking. Motivated in part by the success of the hierarchical organization of the primary visual cortex (area V1), we establish an architecture consisting of five layers: whitening, rectification, normalization, coding and polling. The first three layers stem from the models developed for object recognition. In this paper, our attention focuses on the coding and pooling layers. In particular, we use a discriminative sparse coding method in the coding layer along with spatial pyramid representation in the pooling layer, which makes it easier to distinguish the target to be tracked from its background in the presence of appearance variations. An extensive experimental study shows that the proposed method has higher tracking accuracy than several state-of-the-art trackers.
Resumo:
The problem of selecting suppliers/partners is a crucial and important part in the process of decision making for companies that intend to perform competitively in their area of activity. The selection of supplier/partner is a time and resource-consuming task that involves data collection and a careful analysis of the factors that can positively or negatively influence the choice. Nevertheless it is a critical process that affects significantly the operational performance of each company. In this work, trough the literature review, there were identified five broad suppliers selection criteria: Quality, Financial, Synergies, Cost, and Production System. Within these criteria, it was also included five sub-criteria. Thereafter, a survey was elaborated and companies were contacted in order to answer which factors have more relevance in their decisions to choose the suppliers. Interpreted the results and processed the data, it was adopted a model of linear weighting to reflect the importance of each factor. The model has a hierarchical structure and can be applied with the Analytic Hierarchy Process (AHP) method or Simple Multi-Attribute Rating Technique (SMART). The result of the research undertaken by the authors is a reference model that represents a decision making support for the suppliers/partners selection process.
Resumo:
Cette thèse est une contribution à la modélisation, la planification et l’optimisation du transport pour l’approvisionnement en bois de forêt des industries de première transformation. Dans ce domaine, les aléas climatiques (mise au sol des bois par les tempêtes), sanitaires (attaques bactériologiques et fongiques des bois) et commerciaux (variabilité et exigence croissante des marchés) poussent les divers acteurs du secteur (entrepreneurs et exploitants forestiers, transporteurs) à revoir l’organisation de la filière logistique d’approvisionnement, afin d’améliorer la qualité de service (adéquation offre-demande) et de diminuer les coûts. L’objectif principal de cette thèse était de proposer un modèle de pilotage améliorant la performance du transport forestier, en respectant les contraintes et les pratiques du secteur. Les résultats établissent une démarche de planification hiérarchique des activités de transport à deux niveaux de décision, tactique et opérationnel. Au niveau tactique, une optimisation multi-périodes permet de répondre aux commandes en minimisant l’activité globale de transport, sous contrainte de capacité agrégée des moyens de transport accessibles. Ce niveau permet de mettre en œuvre des politiques de lissage de charge et d’organisation de sous-traitance ou de partenariats entre acteurs de transport. Au niveau opérationnel, les plans tactiques alloués à chaque transporteur sont désagrégés, pour permettre une optimisation des tournées des flottes, sous contrainte des capacités physiques de ces flottes. Les modèles d’optimisation de chaque niveau sont formalisés en programmation linéaire mixte avec variables binaires. L’applicabilité des modèles a été testée en utilisant un jeu de données industrielles en région Aquitaine et a montré des améliorations significatives d’exploitation des capacités de transport par rapport aux pratiques actuelles. Les modèles de décision ont été conçus pour s’adapter à tout contexte organisationnel, partenarial ou non : la production du plan tactique possède un caractère générique sans présomption de l’organisation, celle-ci étant prise en compte, dans un deuxième temps, au niveau de l’optimisation opérationnelle du plan de transport de chaque acteur.
Resumo:
Le processus de planification forestière hiérarchique présentement en place sur les terres publiques risque d’échouer à deux niveaux. Au niveau supérieur, le processus en place ne fournit pas une preuve suffisante de la durabilité du niveau de récolte actuel. À un niveau inférieur, le processus en place n’appuie pas la réalisation du plein potentiel de création de valeur de la ressource forestière, contraignant parfois inutilement la planification à court terme de la récolte. Ces échecs sont attribuables à certaines hypothèses implicites au modèle d’optimisation de la possibilité forestière, ce qui pourrait expliquer pourquoi ce problème n’est pas bien documenté dans la littérature. Nous utilisons la théorie de l’agence pour modéliser le processus de planification forestière hiérarchique sur les terres publiques. Nous développons un cadre de simulation itératif en deux étapes pour estimer l’effet à long terme de l’interaction entre l’État et le consommateur de fibre, nous permettant ainsi d’établir certaines conditions pouvant mener à des ruptures de stock. Nous proposons ensuite une formulation améliorée du modèle d’optimisation de la possibilité forestière. La formulation classique du modèle d’optimisation de la possibilité forestière (c.-à-d., maximisation du rendement soutenu en fibre) ne considère pas que le consommateur de fibre industriel souhaite maximiser son profit, mais suppose plutôt la consommation totale de l’offre de fibre à chaque période, peu importe le potentiel de création de valeur de celle-ci. Nous étendons la formulation classique du modèle d’optimisation de la possibilité forestière afin de permettre l’anticipation du comportement du consommateur de fibre, augmentant ainsi la probabilité que l’offre de fibre soit entièrement consommée, rétablissant ainsi la validité de l’hypothèse de consommation totale de l’offre de fibre implicite au modèle d’optimisation. Nous modélisons la relation principal-agent entre le gouvernement et l’industrie à l’aide d’une formulation biniveau du modèle optimisation, où le niveau supérieur représente le processus de détermination de la possibilité forestière (responsabilité du gouvernement), et le niveau inférieur représente le processus de consommation de la fibre (responsabilité de l’industrie). Nous montrons que la formulation biniveau peux atténuer le risque de ruptures de stock, améliorant ainsi la crédibilité du processus de planification forestière hiérarchique. Ensemble, le modèle biniveau d’optimisation de la possibilité forestière et la méthodologie que nous avons développée pour résoudre celui-ci à l’optimalité, représentent une alternative aux méthodes actuellement utilisées. Notre modèle biniveau et le cadre de simulation itérative représentent un pas vers l’avant en matière de technologie de planification forestière axée sur la création de valeur. L’intégration explicite d’objectifs et de contraintes industrielles au processus de planification forestière, dès la détermination de la possibilité forestière, devrait favoriser une collaboration accrue entre les instances gouvernementales et industrielles, permettant ainsi d’exploiter le plein potentiel de création de valeur de la ressource forestière.
Resumo:
Objectives: To investigate whether low perceived organisational injustice predicts heavy drinking among employees. Methods: Data from the prospective occupational cohort study, the 10-Town Study, related to 15 290 Finnish public sector local government employees nested in 2432 work units, were used. Non-drinkers were excluded. Procedural, interactional and total organisational justice, heavy drinking (>=210 g of absolute alcohol per week) and other psychosocial factors were determined by means of questionnaire in 2000-2001 (phase 1) and 2004 (phase 2). Multilevel logistic regression analyses taking into account for the hierarchical structure of the data were conducted and adjustments were made for sex, age, socio-economic position, marital status, baseline heavy drinking, psychological distress and other psychosocial risk factors such as job strain and effort/reward imbalance. Results: After adjustments, participants who reported low procedural justice at phase 1 were about 1.2 times more likely to be heavy drinkers at phase 2 compared with their counterparts with high justice. Low perceived justice in interpersonal treatment and low perceived total organisational justice were associated with an elevated prevalence of heavy drinking only in the socio-demographics adjusted model. Conclusions: This is the first longitudinal study to show that low procedural justice is weakly associated with an increased likelihood of heavy drinking.
Resumo:
Mestrado em Engenharia Florestal e dos Recursos Naturais - Instituto Superior de Agronomia - UL
Resumo:
Free-riding behaviors exist in tourism and they should be analyzed from a comprehensive perspective; while the literature has mainly focused on free riders operating in a destination, the destinations themselves might also free ride when they are under the umbrella of a collective brand. The objective of this article is to detect potential free-riding destinations by estimating the contribution of the different individual destinations to their collective brands, from the point of view of consumer perception. We argue that these individual contributions can be better understood by reflecting the various stages that tourists follow to reach their final decision. A hierarchical choice process is proposed in which the following choices are nested (not independent): “whether to buy,” “what collective brand to buy,” and “what individual brand to buy.” A Mixed Logit model confirms this sequence, which permits estimation of individual contributions and detection of free riders.
Resumo:
Planning, navigation, and search are fundamental human cognitive abilities central to spatial problem solving in search and rescue, law enforcement, and military operations. Despite a wealth of literature concerning naturalistic spatial problem solving in animals, literature on naturalistic spatial problem solving in humans is comparatively lacking and generally conducted by separate camps among which there is little crosstalk. Addressing this deficiency will allow us to predict spatial decision making in operational environments, and understand the factors leading to those decisions. The present dissertation is comprised of two related efforts, (1) a set of empirical research studies intended to identify characteristics of planning, execution, and memory in naturalistic spatial problem solving tasks, and (2) a computational modeling effort to develop a model of naturalistic spatial problem solving. The results of the behavioral studies indicate that problem space hierarchical representations are linear in shape, and that human solutions are produced according to multiple optimization criteria. The Mixed Criteria Model presented in this dissertation accounts for global and local human performance in a traditional and naturalistic Traveling Salesman Problem. The results of the empirical and modeling efforts hold implications for basic and applied science in domains such as problem solving, operations research, human-computer interaction, and artificial intelligence.
Resumo:
Purpose: To assess the compliance of Daily Disposable Contact Lenses (DDCLs) wearers with replacing lenses at a manufacturer-recommended replacement frequency. To evaluate the ability of two different Health Behavioural Theories (HBT), The Health Belief Model (HBM) and The Theory of Planned Behaviour (TPB), in predicting compliance. Method: A multi-centre survey was conducted using a questionnaire completed anonymously by contact lens wearers during the purchase of DDCLs. Results: Three hundred and fifty-four questionnaires were returned. The survey comprised 58.5% females and 41.5% males (mean age 34. ±. 12. years). Twenty-three percent of respondents were non-compliant with manufacturer-recommended replacement frequency (re-using DDCLs at least once). The main reason for re-using DDCLs was "to save money" (35%). Predictions of compliance behaviour (past behaviour or future intentions) on the basis of the two HBT was investigated through logistic regression analysis: both TPB factors (subjective norms and perceived behavioural control) were significant (p. <. 0.01); HBM was less predictive with only the severity (past behaviour and future intentions) and perceived benefit (only for past behaviour) as significant factors (p. <. 0.05). Conclusions: Non-compliance with DDCLs replacement is widespread, affecting 1 out of 4 Italian wearers. Results from the TPB model show that the involvement of persons socially close to the wearers (subjective norms) and the improvement of the procedure of behavioural control of daily replacement (behavioural control) are of paramount importance in improving compliance. With reference to the HBM, it is important to warn DDCLs wearers of the severity of a contact-lens-related eye infection, and to underline the possibility of its prevention.
Resumo:
Understanding how virus strains offer protection against closely related emerging strains is vital for creating effective vaccines. For many viruses, including Foot-and-Mouth Disease Virus (FMDV) and the Influenza virus where multiple serotypes often co-circulate, in vitro testing of large numbers of vaccines can be infeasible. Therefore the development of an in silico predictor of cross-protection between strains is important to help optimise vaccine choice. Vaccines will offer cross-protection against closely related strains, but not against those that are antigenically distinct. To be able to predict cross-protection we must understand the antigenic variability within a virus serotype, distinct lineages of a virus, and identify the antigenic residues and evolutionary changes that cause the variability. In this thesis we present a family of sparse hierarchical Bayesian models for detecting relevant antigenic sites in virus evolution (SABRE), as well as an extended version of the method, the extended SABRE (eSABRE) method, which better takes into account the data collection process. The SABRE methods are a family of sparse Bayesian hierarchical models that use spike and slab priors to identify sites in the viral protein which are important for the neutralisation of the virus. In this thesis we demonstrate how the SABRE methods can be used to identify antigenic residues within different serotypes and show how the SABRE method outperforms established methods, mixed-effects models based on forward variable selection or l1 regularisation, on both synthetic and viral datasets. In addition we also test a number of different versions of the SABRE method, compare conjugate and semi-conjugate prior specifications and an alternative to the spike and slab prior; the binary mask model. We also propose novel proposal mechanisms for the Markov chain Monte Carlo (MCMC) simulations, which improve mixing and convergence over that of the established component-wise Gibbs sampler. The SABRE method is then applied to datasets from FMDV and the Influenza virus in order to identify a number of known antigenic residue and to provide hypotheses of other potentially antigenic residues. We also demonstrate how the SABRE methods can be used to create accurate predictions of the important evolutionary changes of the FMDV serotypes. In this thesis we provide an extended version of the SABRE method, the eSABRE method, based on a latent variable model. The eSABRE method takes further into account the structure of the datasets for FMDV and the Influenza virus through the latent variable model and gives an improvement in the modelling of the error. We show how the eSABRE method outperforms the SABRE methods in simulation studies and propose a new information criterion for selecting the random effects factors that should be included in the eSABRE method; block integrated Widely Applicable Information Criterion (biWAIC). We demonstrate how biWAIC performs equally to two other methods for selecting the random effects factors and combine it with the eSABRE method to apply it to two large Influenza datasets. Inference in these large datasets is computationally infeasible with the SABRE methods, but as a result of the improved structure of the likelihood, we are able to show how the eSABRE method offers a computational improvement, leading it to be used on these datasets. The results of the eSABRE method show that we can use the method in a fully automatic manner to identify a large number of antigenic residues on a variety of the antigenic sites of two Influenza serotypes, as well as making predictions of a number of nearby sites that may also be antigenic and are worthy of further experiment investigation.
Resumo:
Our goal in this paper is to extend previous results obtained for Newtonian and secondgrade fluids to third-grade fluids in the case of an axisymmetric, straight, rigid and impermeable tube with constant cross-section using a one-dimensional hierarchical model based on the Cosserat theory related to fluid dynamics. In this way we can reduce the full threedimensional system of equations for the axisymmetric unsteady motion of a non-Newtonian incompressible third-grade fluid to a system of equations depending on time and on a single spatial variable. Some numerical simulations for the volume flow rate and the the wall shear stress are presented.
Resumo:
Logistic regression is a statistical tool widely used for predicting species’ potential distributions starting from presence/absence data and a set of independent variables. However, logistic regression equations compute probability values based not only on the values of the predictor variables but also on the relative proportion of presences and absences in the dataset, which does not adequately describe the environmental favourability for or against species presence. A few strategies have been used to circumvent this, but they usually imply an alteration of the original data or the discarding of potentially valuable information. We propose a way to obtain from logistic regression an environmental favourability function whose results are not affected by an uneven proportion of presences and absences. We tested the method on the distribution of virtual species in an imaginary territory. The favourability models yielded similar values regardless of the variation in the presence/absence ratio. We also illustrate with the example of the Pyrenean desman’s (Galemys pyrenaicus) distribution in Spain. The favourability model yielded more realistic potential distribution maps than the logistic regression model. Favourability values can be regarded as the degree of membership of the fuzzy set of sites whose environmental conditions are favourable to the species, which enables applying the rules of fuzzy logic to distribution modelling. They also allow for direct comparisons between models for species with different presence/absence ratios in the study area. This makes themmore useful to estimate the conservation value of areas, to design ecological corridors, or to select appropriate areas for species reintroductions.
Resumo:
Species distribution and ecological niche models are increasingly used in biodiversity management and conservation. However, one thing that is important but rarely done is to follow up on the predictive performance of these models over time, to check if their predictions are fulfilled and maintain accuracy, or if they apply only to the set in which they were produced. In 2003, a distribution model of the Eurasian otter (Lutra lutra) in Spain was published, based on the results of a country-wide otter survey published in 1998. This model was built with logistic regression of otter presence-absence in UTM 10 km2 cells on a diverse set of environmental, human and spatial variables, selected according to statistical criteria. Here we evaluate this model against the results of the most recent otter survey, carried out a decade later and after a significant expansion of the otter distribution area in this country. Despite the time elapsed and the evident changes in this species’ distribution, the model maintained a good predictive capacity, considering both discrimination and calibration measures. Otter distribution did not expand randomly or simply towards vicinity areas,m but specifically towards the areas predicted as most favourable by the model based on data from 10 years before. This corroborates the utility of predictive distribution models, at least in the medium term and when they are made with robust methods and relevant predictor variables.