922 resultados para Helmholtz free energy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main goal of this work was to evaluate thermodynamic parameters of the soybean oil extraction process using ethanol as solvent. The experimental treatments were as follows: aqueous solvents with water contents varying from 0 to 13% (mass basis) and extraction temperature varying from 50 to 100 degrees C. The distribution coefficients of oil at equilibrium have been used to calculate enthalpy, entropy and free energy changes. The results indicate that oil extraction process with ethanol is feasible and spontaneous, mainly under higher temperature. Also, the influence of water level in the solvent and temperature were analysed using the response surface methodology (RSM). It can be noted that the extraction yield was highly affected by both independent variables. A joint analysis of thermodynamic and RSM indicates the optimal level of solvent hydration and temperature to perform the extraction process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thermodynamic properties of a selected set of benchmark hydrogen-bonded systems (acetic acid dimer and the complexes of acetic acid with acetamide and methanol) was studied with the goal of obtaining detailed information on solvent effects on the hydrogen-bonded interactions using water, chloroform, and n-heptane as representatives for a wide range in the dielectric constant. Solvent effects were investigated using both explicit and implicit solvation models. For the explicit description of the solvent, molecular dynamics and Monte Carlo simulations in the isothermal isobaric (NpT) ensemble combined with the free energy perturbation technique were performed to determine solvation free energies. Within the implicit solvation approach, the polarizable continuum model and the conductor-like screening model were applied. Combination of gas phase results with the results obtained from the different solvation models through an appropriate thermodynamic cycle allows estimation of complexation free energies, enthalpies, and the respective entropic contributions in solution. Owing to the strong solvation effects of water the cyclic acetic acid dimer is not stable in aqueous solution. In less polar solvents the double hydrogen bond structure of the acetic acid dimer remains stable. This finding is in agreement with previous theoretical and experimental results. A similar trend as for the acetic acid dimer is also observed for the acetamide complex. The methanol complex was found to be thermodynamically unstable in gas phase as well as in any of the three solvents. (C) 2010 Wiley Periodicals, Inc. J Comput Chem 31: 2046-2055, 2010

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pterins are members of a family of heterocyclic compounds present in a wide variety of biological systems and may exist in two forms, corresponding to an acid and a basic tautomer. In this work, the proton transfer reaction between these tautomeric forms was investigated in the gas phase and in aqueous solution. In gas phase, the intramolecular mechanism was carried out for die isolated pterin by quantum mechanical second-order Moller-Plesset Perturbation theory (MP2/aug-cc-pVDZ) calculations and it indicates that the acid form is more stable than the basic form by -1.4 kcal/mol with a barrier of 34.2 kcal/mol with respect to the basic form. In aqueous solution, the role of the water molecules in the proton transfer reaction was analyzed in two separated parts, the direct participation of one water molecule in the reaction path, called water-assisted mechanism, and the complementary participation of the aqueous solvation. The water-assisted mechanism was carried out for one pterin-water cluster by quantum mechanical calculations and it indicates that the acid form is still more stable by -3.3 kcal/mol with a drastic reduction of 70% of the barrier, The bulk solution effect on the intramolecular and water-assisted mechanisms was included by free energy perturbation implemented on Monte Carlo simulations. The bulk water effect is found to be substantial and decisive when the reaction path involves the water-assisted mechanism. In this case, the free energy barrier is only 6.7 kcal/mol and the calculated relative Gibbs free energy for the two tautomers is -11.2 kcal/mol. This value is used to calculate the pK(a) value of 8.2 +/- 0.6 that is in excellent agreement with the experimental result of 7.9.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purple acid phosphatases (PAPs) are a group of metallohydrolases that contain a dinuclear Fe(II)M(II) center (M(II) = Fe, Mn, Zn) in the active site and are able to catalyze the hydrolysis of a variety of phosphoric acid esters. The dinuclear complex [(H(2)O)Fe(III)(mu-OH)Zn(II)(L-H)](CIO(4))(2) (2) with the ligand 2-[N-bis(2-pyridylmethyl)aminomethyl]-4-methyl-6-[N-(2-pyridylmethyl)(2-hydroxybenzyl) aminomethyl]phenol (H(2)L-H) has recently been prepared and is found to closely mimic the coordination environment of the Fe(III)Zn(II) active site found in red kidney bean PAP (Neves et al. J. Am. Chem. Soc. 2007, 129, 7486). The biomimetic shows significant catalytic activity in hydrolytic reactions. By using a variety of structural, spectroscopic, and computational techniques the electronic structure of the Fe(III) center of this biomimetic complex was determined. In the solid state the electronic ground state reflects the rhombically distorted Fe(III)N(2)O(4) octahedron with a dominant tetragonal compression align ad along the mu-OH-Fe-O(phenolate) direction. To probe the role of the Fe-O(phenolate) bond, the phenolate moiety was modified to contain electron-donating or -withdrawing groups (-CH(3), -H, -Br, -NO(2)) in the 5-position. Tie effects of the substituents on the electronic properties of the biomimetic complexes were studied with a range of experimental and computational techniques. This study establishes benchmarks against accurate crystallographic struck ral information using spectroscopic techniques that are not restricted to single crystals. Kinetic studies on the hydrolysis reaction revealed that the phosphodiesterase activity increases in the order -NO(2)<- Br <- H <- CH(3) when 2,4-bis(dinitrophenyl)phosphate (2,4-bdnpp) was used as substrate, and a linear free energy relationship is found when log(k(cat)/k(0)) is plotted against the Hammett parameter a. However, nuclease activity measurements in the cleavage of double stranded DNA showed that the complexes containing the electron-withdrawing -NO(2) and electron-donating CH3 groups are the most active while the cytotoxic activity of the biomimetics on leukemia and lung tumoral cells is highest for complexes with electron-donating groups.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding the molecular basis of the binding modes of natural and synthetic ligands to nuclear receptors is fundamental to our comprehension of the activation mechanism of this important class of hormone regulated transcription factors and to the development of new ligands. Thyroid hormone receptors (TR) are particularly important targets for pharmaceuticals development because TRs are associated with the regulation of metabolic rates, body weight, and circulating levels of cholesterol and triglycerides in humans. While several high-affinity ligands are known, structural information is only partially available. In this work we obtain structural models of several TR-ligand complexes with unknown structure by docking high affinity ligands to the receptors` ligand binding domain with subsequent relaxation by molecular dynamics simulations. The binding modes of these ligands are discussed providing novel insights into the development of TR ligands. The experimental binding free energies are reasonably well-reproduced from the proposed models using a simple linear interaction energy free-energy calculation scheme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nuclear receptors are important targets for pharmaceuticals, but similarities between family members cause difficulties in obtaining highly selective compounds. Synthetic ligands that are selective for thyroid hormone (TH) receptor beta (TR beta) vs. TR alpha reduce cholesterol and fat without effects on heart rate; thus, it is important to understand TR beta-selective binding. Binding of 3 selective ligands (GC-1, KB141, and GC-24) is characterized at the atomic level; preferential binding depends on a nonconserved residue (Asn-331 beta) in the TR beta ligand-binding cavity (LBC), and GC-24 gains extra selectivity from insertion of a bulky side group into an extension of the LBC that only opens up with this ligand. Here we report that the natural TH 3,5,3`-triodothyroacetic acid (Triac) exhibits a previously unrecognized mechanism of TR beta selectivity. TR x-ray structures reveal better fit of ligand with the TR alpha LBC. The TR beta LBC, however, expands relative to TR alpha in the presence of Triac (549 angstrom(3) vs. 461 angstrom(3)), and molecular dynamics simulations reveal that water occupies the extra space. Increased solvation compensates for weaker interactions of ligand with TR beta and permits greater flexibility of the Triac carboxylate group in TR beta than in TR alpha. We propose that this effect results in lower entropic restraint and decreases free energy of interactions between Triac and TR beta, explaining subtype-selective binding. Similar effects could potentially be exploited in nuclear receptor drug design.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the asymptotic properties of the number of open paths of length n in an oriented rho-percolation model. We show that this number is e(n alpha(rho)(1+o(1))) as n ->infinity. The exponent alpha is deterministic, it can be expressed in terms of the free energy of a polymer model, and it can be explicitly computed in some range of the parameters. Moreover, in a restricted range of the parameters, we even show that the number of such paths is n(-1/2)We (n alpha(rho))(1+o(1)) for some nondegenerate random variable W. We build on connections with the model of directed polymers in random environment, and we use techniques and results developed in this context.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of anticancer therapeutics that target Cdc25 phosphatases is now an active area of research. A complete understanding of the Cdc25 catalytic mechanism would certainly allow a more rational inhibitor design. However, the identity of the catalytic acid used by Cdc25 has been debated and not established unambiguously. Results of molecular dynamics simulations with a calibrated hybrid potential for the first reaction step catalyzed by Cdc25B in complex with its natural substrate, the Cdk2-pTpY/CycA protein complex, are presented here. The calculated reaction free-energy profiles are in very good agreement with experimental measurements and are used to discern between different proposals for the general acid. In addition, the simulations give useful insight on interactions that can be explored for the design of inhibitors specific to Cdc25.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The activation parameters for the thermal decomposition of 13 acridinium-substituted 1,2-dioxetanes, bearing an aromatic moiety, were determined and their chemiluminescence emission quantum yields estimated, utilizing in situ photosensitized 1,2-dioxetane generation and observation of its thermal decomposition kinetics, without isolation of these highly unstable cyclic peroxides. Decomposition rate constants show linear free-energy correlation for electron-withdrawing substituents, with a Hammett reaction constant of rho = 1.3 +/- 0.1, indicating the occurrence of an intramolecular electron transfer from the acridinium moiety to the 1,2-dioxetane ring, as postulated by the intramolecular chemically initiated electron exchange luminescence (CIEEL) mechanism. Emission quantum yield behavior can also be rationalized on the basis of the intramolecular CIEEL mechanism, additionally evidencing its occurrence in this transformation. Both relations constitute the first experimental evidence for the occurrence of the postulated intramolecular electron transfer in the catalyzed and induced decomposition of properly substituted 1,2-dioxetanes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Characterization of Sterculia striate polysaccharide (SSP) films adsorbed onto Si wafers from solutions prepared in ethyl methyl imidazolium acetate (EmimAc), water or NaOH 0.01 mol/L was systematically studied by means of ellipsometry, atomic force microscopy and contact angle measurements. SSP adsorbed from EmimAc onto Si wafer as homogeneous monolayers (similar to 0.5 nm thick), while from water or NaOH 0.01 mol/L SSP formed layers of similar to 4.0 nm and similar to 1.5 nm thick, respectively. Surface energy values found for SSP adsorbed from EmimAc or water were 68 +/- 2 mJ/m(2) and 65 +/- 2 mJ/m(2), respectively, whereas from NaOH it amounted to 57 +/- 3 mJ/m(2). The immobilization of lysozyme (LYS) onto SSP films was also investigated. The mean thickness of LYS (d(LYS)) immobilized onto SSP films adsorbed from each solvent tended to increase with the decrease of gamma(P)(S) and gamma(total)(S). However, the enzymatic activity of LYS molecules was higher when they were immobilized onto SSP films with higher gamma(P)(S) and gamma(total)(S) values. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A high-energy intermediate in the peroxyoxalate reaction can be accumulated at room temperature under specific reaction conditions and in the absence of any reducing agent in up to micromolar concentrations. Bimolecular interaction of this intermediate, accumulated in the reaction of oxalyl chloride with hydrogen peroxide, with an activator (highly fluorescent aromatic hydrocarbons with low oxidation potential) added in delay shows unequivocally that this intermediate is responsible for chemiexcitation of the activator. Activation parameters for the unimolccular decomposition of this intermediate (Delta H(double dagger) = 11.2 kcal mol(-1); Delta S(double dagger) = -23.2 cal mol(-1) K(-1)) and for its bimolecular reaction with 9,10-diphenylanthracene (Delta H(double dagger) = 4.2 kcal mol(-1); Delta S(double dagger) = -26.9 cal mol(-1) K(-1)) show that this intermediate is much less stable than typical 1,2-dioxetanes and 1,2-dioxetanones and demonstrate its highly favored interaction with the activator. Therefore, it can be inferred that structural characterization of the high-energy intermediate in the presence of an activator must be highly improbable. The observed linear free-energy correlation between the catalytic rate constants and the oxidation potentials of several activators definitely confirms the occurrence of the chemically initiated electron-exchange luminescence (CIEEL) mechanism in the chemiexcitation step of the peroxyoxalate system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanism and the energy profile of the gas-phase reaction that mimics esterification under acidic conditions have been investigated at different levels of theory. These reactions are known to proceed with rate constants close to the collision limit in the gas-phase and questions have been raised as to whether the typical addition-elimination mechanism via a tetrahedral intermediate can explain the ease of these processes. Because these reactions are common to many organic and biochemical processes it is important to understand the intrinsic reactivity of these systems. Our calculations at different levels of theory reveal that a stepwise mechanism via a tetrahedral species is characterized by energy barriers that are inconsistent with the experimental results. For the thermoneutral exchange between protonated acetic acid and water and the exothermic reaction of protonated acetic acid and methanol our calculations show that these reactions proceed initially by a proton shuttle between the carbonyl oxygen and the hydroxy oxygen of acetic acid mediated by water, or methanol, followed by displacement at the acylium ion center. These findings suggest that the reactions in the gas-phase should be viewed as an acylium ion transfer reaction. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1596-1606, 2011

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nature of the protective film formed by benzotriazole (BTAH) on the surface of the 90/10 CuNi alloy in deaerated 0.5 mol L-1 H2SO4 solution containing Fe(III) ions as oxidant was investigated by weight-loss, calorimetric measurements, and by surface-enhanced Raman spectroscopy (SERS). The SERS measurements show that the protective film is composed by the [Cu(I)BTA](n), polymeric complex and that the BTAH molecules are also adsorbed on the electrode surface. A modification of the BET isotherm for adsorption of gases ill solids is proposed to describe the experimental results obtained from weight-loss experiments that suggest an adsorption in multilayers. Electrochemical studies of copper and nickel in 0.5 mol L-1 H2SO4 in presence and absence of BTAH have also been made as an aid to interpret the results. The calculated adsorption free energy of the cuprous benzotriazolate on the surface of the alloy is in accordance with the value for pure copper. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CCSD(T) with a series of correlation consistent basis up to quadruple-zeta is used to investigate the structures, vibrational spectra, relative stability, heats of formation, and barrier to isomerization of S=SBr2 and BrSSBr. It represents the most accurate and detailed characterization of these molecules to date. We show that the frequency mode at 302 cm(-1), detected in various studies and assigned to impurities by some authors, and to the anti-symmetric SBr stretch in BrSSBr by others, thus in fact corresponds to the anti-symmetric SBr stretch in the elusive S=SBr2 species; it thus corroborates and complements an earlier partial IR spectra study attributable to S=SBr2. Including corrections for relativistic and core-valence correlation effects, we also predict 26.33 (12.74) kcal/mol for Delta H-f (298.15 K) of S=SBr2 (BrSSBr). For the S=SBr2 -> BrSSBr reaction, our best estimates for the Gibbs free energy and the enthalpy of the reaction at 298.15 K are -13.71 and -13.44 kcal/mol, respectively. For a value of Delta G(#) equal to 23.52 kcal/mol, we estimate a TST rate constant, at 298.15 K, of 3.57 x 10(-5) s(-1). (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Structural and thermodynamic stabilities of monomers and dimers of trialkylphosphine oxides (TRPO) were Studied using quantum chemistry calculations. Density functional theory calculations were carried Out and the structures Of four TRPO have been determined: TMPO (methyl; R = CH(3)), TEPO (ethyl; R = CH(3)CH(2)), TBPO (n-butyl; R = CH(3)(CH(2))(3)), and TOPO (n-octyl; R = CH(3)(CH(2))(7)). TRPO homodimers were investigated considering two isomeric possibilities for each dimer. Relative binding energies and the enthalpic and entropic contributions to the Gibbs free energy were Calculated for all dimers. The formation of dimers from the individual monomeric TRPO species as a function of temperature was also analyzed. (C) 2008 Wiley Periodicals, Inc. Int J Quantum Chem 109: 250-258, 2009