867 resultados para HIGH-PERFORMANCE LIQUID
Resumo:
We show that aligned gold nanotube arrays capable of supporting plasmonic resonances can be used as high performance refractive index sensors in biomolecular binding reactions. A methodology to examine the sensing ability of the inside and outside walls of the nanotube structures is presented. The sensitivity of the plasmonic nanotubes is found to increase as the nanotube walls are exposed, and the sensing characteristic of the inside and outside walls is shown to be different. Finite element simulations showed good qualitative agreement with the observed behavior. Free standing gold nanotubes displayed bulk sensitivities in the region of 250 nm per refractive index unit and a signal-to-noise ratio better than 1000 upon protein binding which is highly competitive with state-of-the-art label-free sensors.
A Theoretical and Experimental Study of Resonance in a High Performance Engine Intake System: Part 1
Resumo:
The unsteady gas dynamic phenomena in engine intake systems of the type found in racecars have been examined. In particular, the resonant tuning effects, including cylinder-to-cylinder power variations, which can occur as a result of the interaction between an engine and its airbox have been considered. Frequency analysis of the output from a Virtual 4-Stroke 1D engine simulation was used to characterise the forcing function applied by an engine to an airbox. A separate computational frequency sweeping technique, which employed the CFD package FLUENT, was used to determine the natural frequencies of virtual airboxes in isolation from an engine. Using this technique, an airbox with a natural frequency at 75 Hz was designed for a Yamaha R6 4-cylinder motorcycle engine. The existence of an airbox natural frequency at 75 Hz was subsequently confirmed by an experimental frequency sweeping technique carried out on the engine test bed. A coupled 1D/3D analysis which employed the engine simulation package Virtual 4-Stroke and the CFD package FLUENT, was used to model the combined engine and airbox system. The coupled 1D/3D analysis predicted a 75 Hz resonance of the airbox at an engine speed of 9000 rpm. This frequency was the induction frequency for a single cylinder. An airbox was fabricated and tested on the engine. Static pressure was recorded at a grid of points in the airbox as the engine was swept through a speed range of 3000 to 10000 rpm. The measured engine speed corresponding to resonance in the airbox agreed well with the predicted values. There was also good correlation between the amplitude and phase of the pressure traces recorded within the airbox and the 1D/3D predictions.
Resumo:
Advances in silicon technology have been a key development in the realisation of many telecommunication and signal processing systems. In many cases, the development of application-specific digital signal processing (DSP) chips is the most cost-effective solution and provides the highest performance. Advances made in computer-aided design (CAD) tools and design methodologies now allow designers to develop complex chips within months or even weeks. This paper gives an insight into the challenges and design methodologies of implementing advanced highperformance chips for DSP. In particular, the paper reviews some of the techniques used to develop circuit architectures from high-level descriptions and the tools which are then used to realise silicon layout.
Resumo:
Fibre distribution and orientation in a series of round panel specimens of ultra high performance fibre reinforced concrete (UHPFRC) was investigated using electrical resistivity measurements and confirmed by X-ray CT imaging. By pouring specimens in different ways, the orientation of steel fibres was influenced and the sensitivity of the electrical resistivity technique was investigated. The round panels were tested in flexure and the results are discussed in relation to the observed orientation of fibres in the panels. It was found that the fibres tended to align perpendicular to the direction of flow. As a result, panels poured from the centre were significantly stronger than panels poured by other methods because the alignment of fibres led to more fibres bridging the radial cracks formed during mechanical testing.
Resumo:
A new generation of concrete, Ultra-high performance fibre reinforced concrete (UHPFRC) has been developed for its outstanding mechanical performance and shows a very promising future in construction applications. In this paper, several possibilities are examined for reducing the price of producing UHPFRC and for bringing UHPFRC away from solely precast applications and onto the construction site as an in situ material. Recycled glass cullet and two types of local natural sand were examined as replacement materials for the more expensive silica sand normally used to produce UHPFRC. In addition, curing of UHPFRC cubes and prisms at 20 degrees C and 90 degrees C has been investigated to determine differences in both mechanical and ductility.
Resumo:
A novel high performance bit parallel architecture to perform square root and division is proposed. Relevant VLSI design issues have been addressed. By employing redundant arithmetic and a semisystolic schedule, the throughput has been made independent of the size of the array.
Resumo:
DDR-SDRAM based data lookup techniques are evolving into a core technology for packet lookup applications for data network, benefitting from the features of high density, high bandwidth and low price of DDR memory products in the market. Our proposed DDR-SDRAM based lookup circuit is capable of achieving IP header lookup for network line-rates of up to 10Gbps, providing a solution on high-performance and economic packet header inspections. ©2008 IEEE.