971 resultados para Fluid dynamic measurements.
Resumo:
When a structure vibrates immersed in a fluid it is known that the dynamic properties of the system are modified. The surrounding fluid will, in general, contribute to the inertia, the rigidity and the damping coefficient of the coupled fluid-structure system. For light structures, like spacecraft antennas, even when the fluid is air the contribution to the dynamic properties can be important. For not so light structures the ratio of the equivalent fluid/structure mass and rigidity can be very small and the fluid contribution could be neglected. For the ratio of equivalent fluid/structure damping both terms are of the same order and therefore the fluid contribution must be studied. The working life of the spacecraft structure would be on space and so without any surrounding fluid. The response of a spacecraft structure on its operational life would be attenuated by the structural damping alone but when the structure is dynamically tested on the earth the dynamic modal test is performed with the fluid surrounding it. The results thus are contaminated by the effects of the fluid. If the damping added by the fluid is of the same order as the structural damping the response of the structure in space can be quite different to the response predicted on earth. It is therefore desirable to have a method able to determine the amount of damping induced by the fluid and that should be subtracted of the total damping measured on the modal vibration test. In this work, a method for the determination of the effect of the surrounding fluid on the dynamic characteristics of a circular plate has been developed. The plate is assumed to vibrate harmonically with the vacuum modes and the generalized forces matrix due to the fluid is thus computed. For a compressible fluid this matrix is formed by complex numbers including terms of inertia, rigidity and damping. The matrix due to the fluid loading is determined by a boundary element method (BEM). The BEM used is of circular rings on the plate surface so the number of elements to obtain an accurate result is very low. The natural frequencies of the system are computed by an iteration procedure one by one and also the damping fluid contribution. Comparisons of the present method with various experimental data and other theories show the efficiency and accuracy of the method for any support condition of the plate.
Resumo:
Natural radioactive tracer-based assessments of basin-scale submarine groundwater discharge (SGD) are well developed. However, SGD takes place in different modes and the flow and discharge mechanisms involved occur over a wide range of spatial and temporal scales. Quantifying SGD while discriminating its source functions therefore remains a major challenge. However, correctly identifying both the fluid source and composition is critical. When multiple sources of the tracer of interest are present, failure to adequately discriminate between them leads to inaccurate attribution and the resulting uncertainties will affect the reliability of SGD solute loading estimates. This lack of reliability then extends to the closure of local biogeochemical budgets, confusing measures aiming to mitigate pollution. Here, we report a multi-tracer study to identify the sources of SGD, distinguish its component parts and elucidate the mechanisms of their dispersion throughout the Ria Formosa – a seasonally hypersaline lagoon in Portugal. We combine radon budgets that determine the total SGD (meteoric + recirculated seawater) in the system with stable isotopes in water (δ2H, δ18O), to specifically identify SGD source functions and characterize active hydrological pathways in the catchment. Using this approach, SGD in the Ria Formosa could be separated into two modes, a net meteoric water input and another involving no net water transfer, i.e., originating in lagoon water re-circulated through permeable sediments. The former SGD mode is present occasionally on a multi-annual timescale, while the latter is a dominant feature of the system. In the absence of meteoric SGD inputs, seawater recirculation through beach sediments occurs at a rate of ∼ 1.4 × 106 m3 day−1. This implies that the entire tidal-averaged volume of the lagoon is filtered through local sandy sediments within 100 days ( ∼ 3.5 times a year), driving an estimated nitrogen (N) load of ∼ 350 Ton N yr−1 into the system as NO3−. Land-borne SGD could add a further ∼ 61 Ton N yr−1 to the lagoon. The former source is autochthonous, continuous and responsible for a large fraction (59 %) of the estimated total N inputs into the system via non-point sources, while the latter is an occasional allochthonous source capable of driving new production in the system.
Resumo:
Many challenges have been presented in petroleum industry. One of them is the preventing of fluids influx during drilling and cementing. Gas migration can occur as result of pressure imbalance inside the well when well pressure becomes lower than gas zone pressure and in cementing operation this occurs during cement slurry transition period (solid to fluid). In this work it was developed a methodology to evaluate gas migration during drilling and cementing operations. It was considered gel strength concept and through experimental tests determined gas migration initial time. A mechanistic model was developed to obtain equation that evaluates bubble displacement through the fluid while it gels. Being a time-dependant behavior, dynamic rheological measurements were made to evaluate viscosity along the time. For drilling fluids analyzed it was verified that it is desirable fast and non-progressive gelation in order to reduce gas migration without affect operational window (difference between pore and fracture pressure). For cement slurries analyzed, the most appropriate is that remains fluid for more time below critical gel strength, maintaining hydrostatic pressure above gas zone pressure, and after that gels quickly, reducing gas migration. The model developed simulates previously operational conditions and allow changes in operational and fluids design to obtain a safer condition for well construction
Resumo:
An anastomosis is a surgical procedure that consists of the re-connection of two parts of an organ and is commonly required in cases of colorectal cancer. Approximately 80% of the patients diagnosed with this problem require surgery. The malignant tissue located on the gastrointestinal track must be resected and the most common procedure adopted is the anastomosis. Studies made with 2,980 patients that had this procedure, show that the leakage through the anastomosis was 5.1%. This paper discusses the dynamic behavior of N2O gas through different sized leakages as detected by an Infra-Red gas sensor and how the sensors response time changes depending on the leakage size. Different sized holes were made in the rigid tube to simulate an anastomostic leakage. N2O gas was injected into the tube through a pipe and the leakage rate measured by the infra-red gas sensor. Tests were also made experimentally also using a CFD (Computational Fluid Dynamics) package called FloWorks. The results will be compared and discussed in this paper.
Resumo:
The semiarid region of northeastern Brazil, the Caatinga, is extremely important due to its biodiversity and endemism. Measurements of plant physiology are crucial to the calibration of Dynamic Global Vegetation Models (DGVMs) that are currently used to simulate the responses of vegetation in face of global changes. In a field work realized in an area of preserved Caatinga forest located in Petrolina, Pernambuco, measurements of carbon assimilation (in response to light and CO2) were performed on 11 individuals of Poincianella microphylla, a native species that is abundant in this region. These data were used to calibrate the maximum carboxylation velocity (Vcmax) used in the INLAND model. The calibration techniques used were Multiple Linear Regression (MLR), and data mining techniques as the Classification And Regression Tree (CART) and K-MEANS. The results were compared to the UNCALIBRATED model. It was found that simulated Gross Primary Productivity (GPP) reached 72% of observed GPP when using the calibrated Vcmax values, whereas the UNCALIBRATED approach accounted for 42% of observed GPP. Thus, this work shows the benefits of calibrating DGVMs using field ecophysiological measurements, especially in areas where field data is scarce or non-existent, such as in the Caatinga
Resumo:
Using Computational Wind Engineering, CWE, for solving wind-related problems is still a challenging task today, mainly due to the high computational cost required to obtain trustworthy simulations. In particular, the Large Eddy Simulation, LES, has been widely used for evaluating wind loads on buildings. The present thesis assesses the capability of LES as a design tool for wind loading predictions through three cases. The first case is using LES for simulating the wind field around a ground-mounted rectangular prism in Atmospheric Boundary Layer (ABL) flow. The numerical results are validated with experimental results for seven wind attack angles, giving a global understanding of the model performance. The case with the worst model behaviour is investigated, including the spatial distribution of the pressure coefficients and their discrepancies with respect to experimental results. The effects of some numerical parameters are investigated for this case to understand their effectiveness in modifying the obtained numerical results. The second case is using LES for investigating the wind effects on a real high-rise building, aiming at validating the performance of LES as a design tool in practical applications. The numerical results are validated with the experimental results in terms of the distribution of the pressure statistics and the global forces. The mesh sensitivity and the computational cost are discussed. The third case is using LES for studying the wind effects on the new large-span roof over the Bologna stadium. The dynamic responses are analyzed and design envelopes for the structure are obtained. Although it is a numerical simulation before the traditional wind tunnel tests, i.e. the validation of the numerical results are not performed, the preliminary evaluations can effectively inform later investigations and provide the final design processes with deeper confidence regarding the absence of potentially unexpected behaviours.
Resumo:
In this thesis, the viability of the Dynamic Mode Decomposition (DMD) as a technique to analyze and model complex dynamic real-world systems is presented. This method derives, directly from data, computationally efficient reduced-order models (ROMs) which can replace too onerous or unavailable high-fidelity physics-based models. Optimizations and extensions to the standard implementation of the methodology are proposed, investigating diverse case studies related to the decoding of complex flow phenomena. The flexibility of this data-driven technique allows its application to high-fidelity fluid dynamics simulations, as well as time series of real systems observations. The resulting ROMs are tested against two tasks: (i) reduction of the storage requirements of high-fidelity simulations or observations; (ii) interpolation and extrapolation of missing data. The capabilities of DMD can also be exploited to alleviate the cost of onerous studies that require many simulations, such as uncertainty quantification analysis, especially when dealing with complex high-dimensional systems. In this context, a novel approach to address parameter variability issues when modeling systems with space and time-variant response is proposed. Specifically, DMD is merged with another model-reduction technique, namely the Polynomial Chaos Expansion, for uncertainty quantification purposes. Useful guidelines for DMD deployment result from the study, together with the demonstration of its potential to ease diagnosis and scenario analysis when complex flow processes are involved.
Resumo:
Wearable biosensors are attracting interest due to their potential to provide continuous, real-time physiological information via dynamic, non-invasive measurements of biochemical markers in biofluids, such as interstitial fluid (ISF). One notable example of their applications is for glycemic monitoring in diabetic patients, which is typically carried out either by direct measurement of blood glucose via finger pricking or by wearable sensors that can continuously monitor glucose in ISF by sampling it from below the skin with a microneedle. In this context, the development of a new and minimally invasive multisensing tattoo-based platform for the monitoring of glucose and other analytes in ISF extracted through reverse iontophoresis in proposed by the GLUCOMFORT project. This elaborate describes the in-vitro development of flexible electrochemical sensors based on inkjet-printed PEDOT:PSS and metal inks that are capable of determining glucose and chloride at biologically relevant concentrations, making them good candidates for application in the GLUCOMFORT platform. In order to make PEDOT:PSS sensitive to glucose at micromolar concentrations, a biocompatible functionalization based on immobilized glucose oxidase and electrodeposited platinum was developed. This functionalization was successfully applied to bulk and flexible amperometric devices, the design of which was also optimized. Using the same strategy, flexible organic electrochemical transistors (OECTs) for glucose sensing were also made and successfully tested. For the sensing of chloride ions, an organic charge-modulated field-effect transistor (OCMFET) featuring a silver/silver chloride modified floating gate electrode was developed and tested.
Resumo:
Purpose. To investigate misalignments (MAs) on retinal nerve fiber layer thickness (RNFLT) measurements obtained with Cirrus(©) SD-OCT. Methods. This was a retrospective, observational, cross-sectional study. Twenty-seven healthy and 29 glaucomatous eyes of 56 individuals with one normal exam and another showing MA were included. MAs were defined as an improper alignment of vertical vessels in the en face image. MAs were classified in complete MA (CMA) and partial MA (PMA), according to their site: 1 (superior, outside the measurement ring (MR)), 2 (superior, within MR), 3 (inferior, within MR), and 4 (inferior, outside MR). We compared RNFLT measurements of aligned versus misaligned exams in all 4 sectors, in the superior area (sectors 1 + 2), inferior area (sectors 3 + 4), and within the measurement ring (sectors 2 + 3). Results. RNFLT measurements at 12 clock-hour of eyes with MAs in the superior area (sectors 1 + 2) were significantly lower than those obtained in the same eyes without MAs (P = 0.043). No significant difference was found in other areas (sectors 1 + 2 + 3 + 4, sectors 3 + 4, and sectors 2 + 3). Conclusion. SD-OCT scans with superior MAs may present lower superior RNFLT measurements compared to aligned exams.
Resumo:
Current data indicate that the size of high-density lipoprotein (HDL) may be considered an important marker for cardiovascular disease risk. We established reference values of mean HDL size and volume in an asymptomatic representative Brazilian population sample (n=590) and their associations with metabolic parameters by gender. Size and volume were determined in HDL isolated from plasma by polyethyleneglycol precipitation of apoB-containing lipoproteins and measured using the dynamic light scattering (DLS) technique. Although the gender and age distributions agreed with other studies, the mean HDL size reference value was slightly lower than in some other populations. Both HDL size and volume were influenced by gender and varied according to age. HDL size was associated with age and HDL-C (total population); non- white ethnicity and CETP inversely (females); HDL-C and PLTP mass (males). On the other hand, HDL volume was determined only by HDL-C (total population and in both genders) and by PLTP mass (males). The reference values for mean HDL size and volume using the DLS technique were established in an asymptomatic and representative Brazilian population sample, as well as their related metabolic factors. HDL-C was a major determinant of HDL size and volume, which were differently modulated in females and in males.
Resumo:
Infections of the central nervous systems (CNS) present a diagnostic problem for which an accurate laboratory diagnosis is essential. Invasive practices, such as cerebral biopsy, have been replaced by obtaining a polymerase chain reaction (PCR) diagnosis using cerebral spinal fluid (CSF) as a reference method. Tests on DNA extracted from plasma are noninvasive, thus avoiding all of the collateral effects and patient risks associated with CSF collection. This study aimed to determine whether plasma can replace CSF in nested PCR analysis for the detection of CNS human herpesvirus (HHV) diseases by analysing the proportion of patients whose CSF nested PCR results were positive for CNS HHV who also had the same organism identified by plasma nested PCR. In this study, CSF DNA was used as the gold standard, and nested PCR was performed on both types of samples. Fifty-two patients with symptoms of nervous system infection were submitted to CSF and blood collection. For the eight HHV, one positive DNA result-in plasma and/or CSF nested PCR-was considered an active HHV infection, whereas the occurrence of two or more HHVs in the same sample was considered a coinfection. HHV infections were positively detected in 27/52 (51.9%) of the CSF and in 32/52 (61.5%) of the plasma, difference not significant, thus nested PCR can be performed on plasma instead of CSF. In conclusion, this findings suggest that plasma as a useful material for the diagnosis of cases where there is any difficulty to perform a CSF puncture.
Resumo:
This article aimed at comparing the accuracy of linear measurement tools of different commercial software packages. Eight fully edentulous dry mandibles were selected for this study. Incisor, canine, premolar, first molar and second molar regions were selected. Cone beam computed tomography (CBCT) images were obtained with i-CAT Next Generation. Linear bone measurements were performed by one observer on the cross-sectional images using three different software packages: XoranCat®, OnDemand3D® and KDIS3D®, all able to assess DICOM images. In addition, 25% of the sample was reevaluated for the purpose of reproducibility. The mandibles were sectioned to obtain the gold standard for each region. Intraclass coefficients (ICC) were calculated to examine the agreement between the two periods of evaluation; the one-way analysis of variance performed with the post-hoc Dunnett test was used to compare each of the software-derived measurements with the gold standard. The ICC values were excellent for all software packages. The least difference between the software-derived measurements and the gold standard was obtained with the OnDemand3D and KDIS3D (-0.11 and -0.14 mm, respectively), and the greatest, with the XoranCAT (+0.25 mm). However, there was no statistical significant difference between the measurements obtained with the different software packages and the gold standard (p> 0.05). In conclusion, linear bone measurements were not influenced by the software package used to reconstruct the image from CBCT DICOM data.
Resumo:
The objective of this study is to verify the dynamics between fiscal policy, measured by public debt, and monetary policy, measured by a reaction function of a central bank. Changes in monetary policies due to deviations from their targets always generate fiscal impacts. We examine two policy reaction functions: the first related to inflation targets and the second related to economic growth targets. We find that the condition for stable equilibrium is more restrictive in the first case than in the second. We then apply our simulation model to Brazil and United Kingdom and find that the equilibrium is unstable in the Brazilian case but stable in the UK case.
Resumo:
Cancer is a multistep process that begins with the transformation of normal epithelial cells and continues with tumor growth, stromal invasion and metastasis. The remodeling of the peritumoral environment is decisive for the onset of tumor invasiveness. This event is dependent on epithelial-stromal interactions, degradation of extracellular matrix components and reorganization of fibrillar components. Our research group has studied in a new proposed rodent model the participation of cellular and molecular components in the prostate microenvironment that contributes to cancer progression. Our group adopted the gerbil Meriones unguiculatus as an alternative experimental model for prostate cancer study. This model has presented significant responses to hormonal treatments and to development of spontaneous and induced neoplasias. The data obtained indicate reorganization of type I collagen fibers and reticular fibers, synthesis of new components such as tenascin and proteoglycans, degradation of basement membrane components and elastic fibers and increased expression of metalloproteinases. Fibroblasts that border the region, apparently participate in the stromal reaction. The roles of each of these events, as well as some signaling molecules, participants of neoplastic progression and factors that promote genetic reprogramming during epithelial-stromal transition are also discussed.
Resumo:
Evolving interfaces were initially focused on solutions to scientific problems in Fluid Dynamics. With the advent of the more robust modeling provided by Level Set method, their original boundaries of applicability were extended. Specifically to the Geometric Modeling area, works published until then, relating Level Set to tridimensional surface reconstruction, centered themselves on reconstruction from a data cloud dispersed in space; the approach based on parallel planar slices transversal to the object to be reconstructed is still incipient. Based on this fact, the present work proposes to analyse the feasibility of Level Set to tridimensional reconstruction, offering a methodology that simultaneously integrates the proved efficient ideas already published about such approximation and the proposals to process the inherent limitations of the method not satisfactorily treated yet, in particular the excessive smoothing of fine characteristics of contours evolving under Level Set. In relation to this, the application of the variant Particle Level Set is suggested as a solution, for its intrinsic proved capability to preserve mass of dynamic fronts. At the end, synthetic and real data sets are used to evaluate the presented tridimensional surface reconstruction methodology qualitatively.