971 resultados para Fat fish
Resumo:
Introduction An impaired ability to oxidize fat may be a factor in the obesity's aetiology (3). Moreover, the exercise intensity (Fatmax) eliciting the maximal fat oxidation rate (MFO) was lower in obese (O) compared with lean (L) individuals (4). However, difference in fat oxidation rate (FOR) during exercise between O and L remains equivocal and little is known about FORs during high intensities (>60% ) in O compared with L. This study aimed to characterize fat oxidation kinetics over a large range of intensities in L and O. Methods 12 healthy L [body mass index (BMI): 22.8±0.4] and 16 healthy O men (BMI: 38.9±1.4) performed submaximal incremental test (Incr) to determine whole-body fat oxidation kinetics using indirect calorimetry. After a 15-min resting period (Rest) and 10-min warm-up at 20% of maximal power output (MPO, determined by a maximal incremental test), the power output was increased by 7.5% MPO every 6-min until respiratory exchange ratio reached 1.0. Venous lactate and glucose and plasma concentration of epinephrine (E), norepinephrine (NE), insulin and non-esterified fatty acid (NEFA) were assessed at each step. A mathematical model (SIN) (1), including three variables (dilatation, symmetry, translation), was used to characterize fat oxidation (normalized by fat-free mass) kinetics and to determine Fatmax and MFO. Results FOR at Rest and MFO were not significantly different between groups (p≥0.1). FORs were similar from 20-60% (p≥0.1) and significantly lower from 65-85% in O than in L (p≤0.04). Fatmax was significantly lower in O than in L (46.5±2.5 vs 56.7±1.9 % respectively; p=0.005). Fat oxidation kinetics was characterized by similar translation (p=0.2), significantly lower dilatation (p=0.001) and tended to a left-shift symmetry in O compared with L (p=0.09). Plasma E, insulin and NEFA were significantly higher in L compared to O (p≤0.04). There were no significant differences in glucose, lactate and plasma NE between groups (p≥0.2). Conclusion The study showed that O presented a lower Fatmax and a lower reliance on fat oxidation at high, but not at moderate, intensities. This may be linked to a: i) higher levels of insulin and lower E concentrations in O, which may induce blunted lipolysis; ii) higher percentage of type II and a lower percentage of type I fibres (5), and iii) decreased mitochondrial content (2), which may reduce FORs at high intensities and Fatmax. These findings may have implications for an appropriate exercise intensity prescription for optimize fat oxidation in O. References 1. Cheneviere et al. Med Sci Sports Exerc. 2009 2. Holloway et al. Am J Clin Nutr. 2009 3. Kelley et al. Am J Physiol. 1999 4. Perez-Martin et al. Diabetes Metab. 2001 5. Tanner et al. Am J Physiol Endocrinol Metab. 2002
Resumo:
Selostus: Lihassolutyypin ja lihassolun poikkipinta-alan yhteys sian kasvuun ja ruhon koostumukseen maatiaisessa ja yorkshiressa
Resumo:
A dose-response strategy may not only allow investigation of the impact of foods and nutrients on human health but may also reveal differences in the response of individuals to food ingestion based on their metabolic health status. In a randomized crossover study, we challenged 19 normal-weight (BMI: 20-25 kg/m(2)) and 18 obese (BMI: >30 kg/m(2)) men with 500, 1000, and 1500 kcal of a high-fat (HF) meal (60.5% energy from fat). Blood was taken at baseline and up to 6 h postprandially and analyzed for a range of metabolic, inflammatory, and hormonal variables, including plasma glucose, lipids, and C-reactive protein and serum insulin, glucagon-like peptide-1, interleukin-6 (IL-6), and endotoxin. Insulin was the only variable that could differentiate the postprandial response of normal-weight and obese participants at each of the 3 caloric doses. A significant response of the inflammatory marker IL-6 was only observed in the obese group after ingestion of the HF meal containing 1500 kcal [net incremental AUC (iAUC) = 22.9 ± 6.8 pg/mL × 6 h, P = 0.002]. Furthermore, the net iAUC for triglycerides significantly increased from the 1000 to the 1500 kcal meal in the obese group (5.0 ± 0.5 mmol/L × 6 h vs. 6.0 ± 0.5 mmol/L × 6 h; P = 0.015) but not in the normal-weight group (4.3 ± 0.5 mmol/L × 6 h vs. 4.8 ± 0.5 mmol/L × 6 h; P = 0.31). We propose that caloric dose-response studies may contribute to a better understanding of the metabolic impact of food on the human organism. This study was registered at clinicaltrials.gov as NCT01446068.
Resumo:
Fish acute toxicity tests play an important role in environmental risk assessment and hazard classification because they allow for first estimates of the relative toxicity of various chemicals in various species. However, such tests need to be carefully interpreted. Here we shortly summarize the main issues which are linked to the genetics and the condition of the test animals, the standardized test situations, the uncertainty about whether a given test species can be seen as representative to a given fish fauna, the often missing knowledge about possible interaction effects, especially with micropathogens, and statistical problems like small sample sizes and, in some cases, pseudoreplication. We suggest that multi-factorial embryo tests on ecologically relevant species solve many of these issues, and we shortly explain how such tests could be done to avoid the weaker points of fish acute toxicity tests.
Effects of fish oil on the neuro-endocrine responses to an endotoxin challenge in healthy volunteers
Resumo:
Résumé Introduction et hypothèse : Certains acides gras polyinsaturés de type n-3 PUFA, qui sont contenus dans l'huile de poisson, exercent des effets non-énergétiques (fluidité des membranes cellulaires, métabolisme énergétique et prostanoïdes, régulation génique de la réponse inflammatoire). Les mécanismes de la modulation de cette dernière sont encore mal connus. L'administration d'endotoxine (LPS) induit chez les volontaires sains une affection inflammatoire aiguë, comparable à un état grippal, associé à des modifications métaboliques et inflammatoires transitoires, similaires au sepsis. Ce modèle est utilisé de longue date pour l'investigation clinique expérimentale. Cette étude examine les effets d'une supplémentation orale d'huile de poisson sur la réponse inflammatoire (systémique et endocrinienne) de sujets sains soumis à une injection d'endotoxine. L'hypothèse était que la supplémentation d'huile de poisson réduirait les réponses physiologiques à l'endotoxine. Méthodes : Quinze volontaires masculins (âge 26.0±3.1 ans) ont participé à une étude randomisée, contrôlée. Les sujets sont désignés au hasard à recevoir ou non une supplémentation orale : 7.2 g d'huile de poisson par jour correspondant à un apport de 1.1 g/jour d'acides gras 20:5 (n-3, acide écosapentaénoïque) et 0.7 g/jour de 22:6 (n-3, acide docosahexaénoïque). Chaque sujet est investigué deux fois dans des conditions identiques : une fois il reçoit une injection de 2 ng par kg poids corporel de LPS intraveineuse, l'autre fois une injection de placebo. Les variables suivantes sont relevées avant l'intervention et durant les 360 min qui suivent l'injection :signes vitaux, dépense énergétique (EE) et utilisation nette des substrats (calorimétrie indirecte, cinétique du glucose (isotopes stables), taux plasmatique des triglycérides et FFA, du glucose, ainsi que des cytokines et hormones de stress (ACTH, cortisol, Adré, Nor-Adré). Analyses et statistiques :moyennes, déviations standards, analyse de variance (one way, test de Scheffé), différences significatives entre les groupes pour une valeur de p < 0.05. Résultats :L'injection de LPS provoque une augmentation de la température, de la fréquence cardiaque, de la dépense d'énergie et de l'oxydation nette des lipides. On observe une élévation des taux plasmatiques de TNF-a et IL-6, de la glycémie, ainsi qu'une élévation transitoire des concentrations plasmatiques des hormones de stress ACTH, cortisol, adrénaline et noradrénaline. L'huile de poisson atténue significativement la fièvre, la réponse neuro-endocrinienne (ACTH et cortisol) et sympathique (baisse de la noradrénaline plasmatique). Par contre, les taux des cytokines ne sont pas influencés par la supplémentation d'huile de poisson. Conclusion : La supplémentation d'huile de poisson atténue la réponse physiologique à l'endotoxine chez le sujet sain, en particulier la fièvre et la réponse endocrinienne, sans influencer la production des cytokines. Ces résultats soutiennent l'hypothèse que les effets bénéfiques de l'huile de poisson sont principalement caractérisés au niveau du système nerveux central, par des mécanismes non-inflammatoires qui restent encore à élucider.
Resumo:
OBJECTIVE To identify metabolic pathways that may underlie susceptibility or resistance to high-fat diet-induced hepatic steatosis. RESEARCH DESIGN AND METHODS We performed comparative transcriptomic analysis of the livers of A/J and C57Bl/6 mice, which are, respectively, resistant and susceptible to high-fat diet-induced hepatosteatosis and obesity. Mice from both strains were fed a normal chow or a high-fat diet for 2, 10, and 30 days, and transcriptomic data were analyzed by time-dependent gene set enrichment analysis. Biochemical analysis of mitochondrial respiration was performed to confirm the transcriptomic analysis. RESULTS Time-dependent gene set enrichment analysis revealed a rapid, transient, and coordinate upregulation of 13 oxidative phosphorylation genes after initiation of high-fat diet feeding in the A/J, but not in the C57Bl/6, mouse livers. Biochemical analysis using liver mitochondria from both strains of mice confirmed a rapid increase by high-fat diet feeding of the respiration rate in A/J but not C57Bl/6 mice. Importantly, ATP production was the same in both types of mitochondria, indicating increased uncoupling of the A/J mitochondria. CONCLUSIONS Together with previous data showing increased expression of mitochondrial β-oxidation genes in C57Bl/6 but not A/J mouse livers, our present study suggests that an important aspect of the adaptation of livers to high-fat diet feeding is to increase the activity of the oxidative phosphorylation chain and its uncoupling to dissipate the excess of incoming metabolic energy and to reduce the production of reactive oxygen species. The flexibility in oxidative phosphorylation activity may thus participate in the protection of A/J mouse livers against the initial damages induced by high-fat diet feeding that may lead to hepatosteatosis.
Resumo:
Experimental fishing and visual censuses were conducted at nine Posidonia oceanica sites off Minorca exposed to different levels of fishing intensity to assess the effects of recreational fishing on the species that dominate the catch. Total catch per unit effort (CPUE) was highly seasonal and a statistically significant interaction term existed between the season and the level of fishing intensity. CPUE decreased everywhere at the end of the fishing season (autumn), but such a reduction was more intense at those sites exposed to the highest level of fishing. Visual censuses confirmed that there was a lower abundance of vulnerable fish in autumn. Differences vanished in spring probably because fish reshuffled between the considered sites throughout the winter, when the level of fishing intensity was extremely low. Although the average total lengths of Serranus scriba and Diplodus annularis were unaffected by the level of fishing intensity, the average total length of Coris julis was smaller at the most heavily fished sites. In conclusion, recreational fishing has a relevant impact on most of the exploited species and some of the seasonality reported for the Posidonia oceanica fish assemblages might be caused by the seasonality of the fishery.
Resumo:
Body mass index (BMI) is related with cardiorespiratory fitness (CRF), but less is known regarding the combined relationships between BMI and body fat (BF) on CRF. Cross-sectional study included 2361 girls and 2328 boys aged 10–18 years living in the area of Lisbon, Portugal. BMI was calculated by measuring height and weight, and obesity was assessed by international criteria. BF was assessed by bioimpedance. CRF was assessed by the 20-m shuttle run and the participants were classified as normal-to-high or low-CRF level according to Fitness gram criterion-referenced standards. The prevalence of low CRF was 47 and 39% in girls and boys, respectively. The corresponding values for the prevalence of obesity were 4.8 and 5.6% (not significant) and of excess BF of 12.1 and 25.1% (P <0.001), respectively. In both sexes, BMI and BF were inversely related with CRF: r = – 0.53 and – 0.45 for BMI and % BF, respectively, in boys and the corresponding values in girls were – 0.50 and – 0.33 (all P <0.01). When compared with a participant with normal BMI and BF, the odds ratios (95% confidence interval) for low CRF were 1.94 (1.46–2.58) for a participant with normal BMI and high BF, and 6.19 (5.02–7.63) for a participant with high BMI and high BF. The prevalence of low-CRF levels is high in Portuguese youths. BF negatively influences CRF levels among children/adolescents with normal BMI.
Resumo:
ABSTRACT Fat oxidation kinetics: effect of exercise. During graded exercise, absolute whole body fat oxidation rates increase from low to moderate intensities, and then markedly decline at high intensities, implying an exercise intensity (Fatmax) at which the fat oxidation rate is maximal (MFO). The main aim of the present work was to examine the effect of exercise on whole body fat oxidation kinetics. For this purpose, a sinusoidal mathematical model (SIN) has been developped in the first study to provide an accurate description of the shape of fat oxidation kinetics during graded exercise, represented as a function of exercise intensity, and to determine Fatmax and MFO. The SIN model incorporates three independent variables (i.e., dilatation, symmetry, and translation) that correspond to main expected modulations of the basic fat oxidation curve because of factors such as mode of exercise or training status. The results of study 1 showed that the SIN model was a valuable tool to determine Fatmax and MFO, and to precisely characterize and quantify the different shape of fat oxidation kinetics through its three variables. The effectiveness of the SIN model to detect differences in fat oxidation kinetics induced by a specific factor was then confirmed in the second study, which quantitatively described and compared fat oxidation kinetics in two different popular modes of exercise: running and cycling. It was found that the mean fat oxidation kinetics during running was characterized by a greater dilatation and a rightward asymmetry compared with the symmetric parabolic curve in cycling. In the two subsequent studies, the effect of a prior endurance exercise of different intensities and durations on whole body fat oxidation kinetics was examined. Study 3 determined the impact of a 1-h continuous exercise bout at an exercise intensity corresponding to Fatmax on fat oxidation kinetics during a subsequent graded test, while study 4 investigated the effect of an exercise leading to a more pronounced muscle glycogen depletion. The results of these two latter studies showed that fat oxidation rates, MFO, and Fatmax were enhanced following endurance exercise, but were increased to a greater extent with a more severe mucle glycogen depletion, inducing therefore modifications in the postexercise fat oxidation kinetics (i.e., greater dilatation and rightward asymmetry). In perspective, further studies have been suggested 1) to assess physiological meaning of the three independent variables of the SIN model; and 2) to compare the effect of two different training programs on fat oxidation kinetics in obese subjects.
Resumo:
Evidence is accumulating that total body mass and its relative composition influence the rate of fat utilization in man. This effect can be explained by two factors operating in concert: (i) the effect of the size of the tissue mass and (ii) the nature of the fuel mix oxidized, i.e. the proportion of energy derived from fat vs. carbohydrate. In a cross-sectional study of 307 women with increasing degrees of obesity, we observed that the respiratory quotient (RQ) in post-absorptive conditions became progressively lower with increased body fatness, indicating a shift in substrate utilization. However, the RQ is known to be also influenced by the diet commonly ingested by the subjects. A short-term mixed diet overfeeding in lean and obese women has also demonstrated the high sensitivity of RQ to changes in energy balance. Following a one-day overfeeding (2500 kcal/day in excess of the previous 24 h energy expenditure), the magnitude of increase in RQ was identical in lean and obese subjects and the net efficiency of substrate utilization and storage was not influenced by the state of obesity.
Resumo:
Brown adipocytes oxidize fatty acids to produce heat in response to cold or to excessive energy intake; stimulation of brown fat development and function may thus counteract obesity. Brown adipogenesis requires activation of the transcription factor C/EBPβ and recruitment of the zinc finger protein Prdm16, but upstream inducers of these proteins are incompletely defined. Here, we show that genetic inactivation of Plac8, a gene encoding an evolutionarily conserved protein, induces cold intolerance, and late-onset obesity, as well as abnormal morphology and impaired function of brown adipocytes. Using brown preadipocyte lines we show that Plac8 is required for brown fat differentiation, that its overexpression induces C/EBPβ and Prdm16, and that upon induction of differentiation Plac8 associates with C/EBPβ and binds to the C/EBPβ promoter to induce its transcription. Thus, Plac8 is a critical upstream regulator of brown fat differentiation and function that acts, at least in part, by inducing C/EBPβ expression.
Resumo:
Today, there are still uncertainties about the role of exogenous fat on body fat regulation. Early models of energy utilization (for example, Kleiber's, early 20th century) failed to take into account the nature of substrate oxidized in the control of food intake, whereas more recent models (e.g., Flatt's model, end of 20th century) did. Excess body fat storage is ultimately a problem of chronic positive energy balance mediated by a poor control of energy intake or/and a blunted total energy expenditure. Excess fat storage can stem from exogenous fat and to a more limited extent by nonfat substrates precursors transformed into body fat, mostly from carbohydrates, a process known as de novo lipogenesis. When considered over periods of weeks, months or years, total fat balance is closely related to energy balance. Over periods of days, the net change in fat balance is quantitatively limited as compared to the size of endogenous fat storage. The issues discussed in this article primarily include the stimulation of de novo lipogenesis after acute or prolonged CHO overfeeding and whether de novo lipogenesis is a risk factor for obesity development.