498 resultados para Extrasolar planets
Resumo:
The James Webb Space Telescope (JWST) will likely revolutionize transiting exoplanet atmospheric science, due to a combination of its capability for continuous, long duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) Cycle 1 program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful transiting exoplanet characterization programs in later cycles. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed “community targets”) that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations. The latter are a unique challenge compared to transit observations because of their significantly longer durations. Using only a single mode, we propose to observe a full-orbit phase curve of one of the previously characterized, short-orbital-period planets to evaluate the facility-level aspects of long, uninterrupted time-series observations.
Resumo:
We present a primary transit observation for the ultra-hot (T eq ~ 2400 K) gas giant expolanet WASP-121b, made using the Hubble Space Telescope Wide Field Camera 3 in spectroscopic mode across the 1.12–1.64 μm wavelength range. The 1.4 μm water absorption band is detected at high confidence (5.4σ) in the planetary atmosphere. We also reanalyze ground-based photometric light curves taken in the B, r', and z' filters. Significantly deeper transits are measured in these optical bandpasses relative to the near-infrared wavelengths. We conclude that scattering by high-altitude haze alone is unlikely to account for this difference and instead interpret it as evidence for titanium oxide and vanadium oxide absorption. Enhanced opacity is also inferred across the 1.12–1.3 μm wavelength range, possibly due to iron hydride absorption. If confirmed, WASP-121b will be the first exoplanet with titanium oxide, vanadium oxide, and iron hydride detected in transmission. The latter are important species in M/L dwarfs and their presence is likely to have a significant effect on the overall physics and chemistry of the atmosphere, including the production of a strong thermal inversion.
Resumo:
We present the discovery and characterisation of the exoplanets WASP-113b and WASP-114b by the WASP survey, SOPHIE and CORALIE. The planetary nature of the systems was established by performing follow-up photometric and spectroscopic observations. The follow-up data were combined with the WASP-photometry and analysed with an MCMC code to obtain system parameters. The host stars WASP-113 and WASP-114 are very similar. They are both early G-type stars with an effective temperature of ~5900K, [Fe/H] ~0.12 and T_{eff} ~4.1 dex. However, WASP-113 is older than WASP-114. Although the planetary companions have similar radii, WASP-114b is almost 4 times heavier than WASP-113b. WASP-113b has a mass of 0.48 M_{Jup} and an orbital period of ~4.5 days; WASP-114b has a mass of 1.77 M_{Jup} and an orbital period of ~1.5 days. Both planets have inflated radii, in particular WASP-113 with a radius anomaly of Re=0.35. The high scale height of WASP-113b (~950 km ) makes it a good target for follow-up atmospheric observations.
Resumo:
Studies of the physical properties of trans-Neptunian objects (TNOs) are a powerful probe into the processes of planetesimal formation and solar system evolution. James Webb Space Telescope (JWST) will provide unique new capabilities for such studies. Here, we outline where the capabilities of JWST open new avenues of investigation, potentially valuable observations and surveys, and conclude with a discussion of community actions that may serve to enhance the eventual science return of JWST's TNO observations.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
[ES]En este proyecto se ha desarrollado un prototipo de un videojuego en 2D con perspectiva lateral. El juego es fundamentalmente un juego de peleas en el que se usa una pelota para combatir. El objetivo es derrotar al rival, consiguiendo que la pelota le golpee y evitando recibir golpes mediante el uso de los controles apropiados. Está ambientado en un mundo futurista y los combates tienen lugar en naves espaciales o planetas alienígenas. Para el desarrollo de este juego se ha empleado el motor de videojuegos Unity 5, además de recursos creados por la propia autora u obtenidos de diversas fuentes de contenido open-source.
Resumo:
A presente dissertação tem como tema central um modelo construtivo de arquitectura em terra, designadamente o tabique. Este modelo construtivo ancestral de alvenarias reserva na sua génese inúmeras particularidades, que vão desde as mais variadas formas de concepção do modelo por parte dos diferentes povos espalhados pelo mundo aos valiosos contributos sociais e ambientais. Na sua essência, o tabique foi muito utilizado por pessoas de parcos recursos económicos em soluções, por vezes muito engenhosas, levando-as a recorrer à mãe natureza para extrair dela os materiais necessários para a construção das suas casas. Um pouco por todo o mundo existem exemplares deste modelo tradicional contribuindo activamente para o enriquecimento dum vasto espólio de arquitectura em terra, matéria esta que tem vindo a ganhar um novo alento de acordo com as actuais “políticas" ecológicas. Deste modo e ao abrigo dos princípios gerais da conservação e restauro do património, o tabique detém informação relevante no que respeita à sustentabilidade do planeta, tornando o tema mais apelativo ao debate e à planificação de novas acções, envolvendo cada vez mais os profissionais em prol de um objectivo que garanta ao planeta um futuro mais próspero e equilibrado.
Resumo:
We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined. In the case of Titan, most of its methane probably originates from the protosolar nebula, where it would have been trapped in the clathrates agglomerated by the satellite's building blocks. Methane clathrates are still believed to play an important role in the present state of Titan. Their presence is invoked in the satellite's subsurface as a means of replenishing its atmosphere with methane via outgassing episodes. The internal oceans of Enceladus and Europa also provide appropriate thermodynamic conditions that allow formation of methane clathrates. In turn, these clathrates might influence the composition of these liquid reservoirs. Finally, comets and Kuiper Belt Objects might have formed from the agglomeration of clathrates and pure ices in the nebula. The methane observed in comets would then result from the destabilization of clathrate layers in the nuclei concurrent with their approach to perihelion. Thermodynamic equilibrium calculations show that methane-rich clathrate layers may exist on Pluto as well. Key Words: Methane clathrate-Protosolar nebula-Terrestrial planets-Outer Solar System.
Resumo:
Terrestrial planets produce crusts as they differentiate. The Earth’s bi-modal crust, with a high-standing granitic continental crust and a low-standing basaltic oceanic crust, is unique in our solar system and links the evolution of the interior and exterior of this planet. Here I present geochemical observations to constrain processes accompanying crustal formation and evolution. My approach includes geochemical analyses, quantitative modeling, and experimental studies. The Archean crustal evolution project represents my perspective on when Earth’s continental crust began forming. In this project, I utilized critical element ratios in sedimentary records to track the evolution of the MgO content in the upper continental crust as a function time. The early Archean subaerial crust had >11 wt. % MgO, whereas by the end of Archean its composition had evolved to about 4 wt. % MgO, suggesting a transition of the upper crust from a basalt-like to a more granite-like bulk composition. Driving this fundamental change of the upper crustal composition is the widespread operation of subduction processes, suggesting the onset of global plate tectonics at ~ 3 Ga (Abstract figure). Three of the chapters in this dissertation leverage the use of Eu anomalies to track the recycling of crustal materials back into the mantle, where Eu anomaly is a sensitive measure of the element’s behavior relative to neighboring lanthanoids (Sm and Gd) during crustal differentiation. My compilation of Sm-Eu-Gd data for the continental crust shows that the average crust has a net negative Eu anomaly. This result requires recycling of Eu-enriched lower continental crust to the mantle. Mass balance calculations require that about three times the mass of the modern continental crust was returned into the mantle over Earth history, possibly via density-driven recycling. High precision measurements of Eu/Eu* in selected primitive glasses of mid-ocean ridge basalt (MORB) from global MORs, combined with numerical modeling, suggests that the recycled lower crustal materials are not found within the MORB source and may have at least partially sank into the lower mantle where they can be sampled by hot spot volcanoes. The Lesser Antilles Li isotope project provides insights into the Li systematics of this young island arc, a representative section of proto-continental crust. Martinique Island lavas, to my knowledge, represent the only clear case in which crustal Li is recycled back into their mantle source, as documented by the isotopically light Li isotopes in Lesser Antilles sediments that feed into the fore arc subduction trench. By corollary, the mantle-like Li signal in global arc lavas is likely the result of broadly similar Li isotopic compositions between the upper mantle and bulk subducting sediments in most arcs. My PhD project on Li diffusion mechanism in zircon is being carried out in extensive collaboration with multiple institutes and employs analytical, experimental and modeling studies. This ongoing project, finds that REE and Y play an important role in controlling Li diffusion in natural zircons, with Li partially coupling to REE and Y to maintain charge balance. Access to state-of-art instrumentation presented critical opportunities to identify the mechanisms that cause elemental fractionation during laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis. My work here elucidates the elemental fractionation associated with plasma plume condensation during laser ablation and particle-ion conversion in the ICP.
Resumo:
Sound is potentially an effective way of analysing data and it is possible to simultaneously interpret layers of sounds and identify changes. Multiple attempts to use sound with scientific data have been made, with varying levels of success. On many occasions this was done without including the end user during the development. In this study a sonified model of the 8 planets of our solar system was built and tested using an end user approach. The sonification was created for the Esplora Planetarium, which is currently being constructed in Malta. The data requirements were gathered from a member of the planetarium staff, and 12 end users, as well as the planetarium representative tested the sonification. The results suggest that listeners were able to discern various planetary characteristics without requiring any additional information. Three out of eight sound design parameters did not represent characteristics successfully. These issues have been identified and further development will be conducted in order to improve the model.
Resumo:
A investigação em didáctica das ciências tem mostrado que a generalidade dos alunos manifesta cada vez menos interesse para aprender ciências. No entanto, o incremento da importância de temas científicos no nosso dia-a-dia, exige dos indivíduos um conhecimento científico cada vez mais aprofundado. O estudo da Astronomia permite abordar e interligar os conteúdos de tisica mais facilmente, tomando possível a aproximação do conhecimento científico ao conhecimento do quotidiano, mostrando a estreita ligação entre a Física, a Sociedade e a Tecnologia. O processo de ensino-aprendizagem encontra-se em mudança devido à integração das T.I.C. Através da internet e tirando partido da multimédia é possível desenvolver uma formação científica adequada que contribua para o despertar da curiosidade e do interesse dos alunos pela Ciência. Tendo em conta os pressupostos anteriores pretende-se, com este estudo, desenvolver uma plataforma de e-learning e recursos multimédia que satisfaçam estes requisitos. ABSTRACT; The investigation in didactics of sciences has been showing that the generality of students show less and less interest to learn sciences. However, the increment of the importance of scientific themes in our day-to-day life, demands from the individuals an increasingly deeper scientific knowledge. The study of Astronomy allows to approach and to interconnect physics subjects more easily, making possible the approach of scientific knowledge to the knowledge of everyday life, showing the narrow connection among Physics, Society and Technology. The teaching-learning process is in change duet the integration of the I.C.T. Through the internet and taking advantage of multimedia it is possible to develop an appropriate scientific formation that contributes to the awakening of curiosity and of the student's interest for Science. Having in mind the previous presuppositions is intended, with this study, to develop an e-learning platform and multimedia resources that satisfy these requirements.
Resumo:
We investigate the secular dynamics of three-body circumbinary systems under the effect of tides. We use the octupolar non-restricted approximation for the orbital interactions, general relativity corrections, the quadrupolar approximation for the spins, and the viscous linear model for tides. We derive the averaged equations of motion in a simplified vectorial formalism, which is suitable to model the long-term evolution of a wide variety of circumbinary systems in very eccentric and inclined orbits. In particular, this vectorial approach can be used to derive constraints for tidal migration, capture in Cassini states, and stellar spin–orbit misalignment. We show that circumbinary planets with initial arbitrary orbital inclination can become coplanar through a secular resonance between the precession of the orbit and the precession of the spin of one of the stars. We also show that circumbinary systems for which the pericenter of the inner orbit is initially in libration present chaotic motion for the spins and for the eccentricity of the outer orbit. Because our model is valid for the non-restricted problem, it can also be applied to any three-body hierarchical system such as star–planet–satellite systems and triple stellar systems.