940 resultados para Evolutionary optimization methods
Resumo:
In this thesis, we consider the problem of solving large and sparse linear systems of saddle point type stemming from optimization problems. The focus of the thesis is on iterative methods, and new preconditioning srategies are proposed, along with novel spectral estimtates for the matrices involved.
Resumo:
Logistics involves planning, managing, and organizing the flows of goods from the point of origin to the point of destination in order to meet some requirements. Logistics and transportation aspects are very important and represent a relevant costs for producing and shipping companies, but also for public administration and private citizens. The optimization of resources and the improvement in the organization of operations is crucial for all branches of logistics, from the operation management to the transportation. As we will have the chance to see in this work, optimization techniques, models, and algorithms represent important methods to solve the always new and more complex problems arising in different segments of logistics. Many operation management and transportation problems are related to the optimization class of problems called Vehicle Routing Problems (VRPs). In this work, we consider several real-world deterministic and stochastic problems that are included in the wide class of the VRPs, and we solve them by means of exact and heuristic methods. We treat three classes of real-world routing and logistics problems. We deal with one of the most important tactical problems that arises in the managing of the bike sharing systems, that is the Bike sharing Rebalancing Problem (BRP). We propose models and algorithms for real-world earthwork optimization problems. We describe the 3DP process and we highlight several optimization issues in 3DP. Among those, we define the problem related to the tool path definition in the 3DP process, the 3D Routing Problem (3DRP), which is a generalization of the arc routing problem. We present an ILP model and several heuristic algorithms to solve the 3DRP.
Resumo:
The goal of this thesis is the acceleration of numerical calculations of QCD observables, both at leading order and next–to–leading order in the coupling constant. In particular, the optimization of helicity and spin summation in the context of VEGAS Monte Carlo algorithms is investigated. In the literature, two such methods are mentioned but without detailed analyses. Only one of these methods can be used at next–to–leading order. This work presents a total of five different methods that replace the helicity sums with a Monte Carlo integration. This integration can be combined with the existing phase space integral, in the hope that this causes less overhead than the complete summation. For three of these methods, an extension to existing subtraction terms is developed which is required to enable next–to–leading order calculations. All methods are analyzed with respect to efficiency, accuracy, and ease of implementation before they are compared with each other. In this process, one method shows clear advantages in relation to all others.
Resumo:
The focus of this thesis is to contribute to the development of new, exact solution approaches to different combinatorial optimization problems. In particular, we derive dedicated algorithms for a special class of Traveling Tournament Problems (TTPs), the Dial-A-Ride Problem (DARP), and the Vehicle Routing Problem with Time Windows and Temporal Synchronized Pickup and Delivery (VRPTWTSPD). Furthermore, we extend the concept of using dual-optimal inequalities for stabilized Column Generation (CG) and detail its application to improved CG algorithms for the cutting stock problem, the bin packing problem, the vertex coloring problem, and the bin packing problem with conflicts. In all approaches, we make use of some knowledge about the structure of the problem at hand to individualize and enhance existing algorithms. Specifically, we utilize knowledge about the input data (TTP), problem-specific constraints (DARP and VRPTWTSPD), and the dual solution space (stabilized CG). Extensive computational results proving the usefulness of the proposed methods are reported.
Resumo:
This is the second part of a study investigating a model-based transient calibration process for diesel engines. The first part addressed the data requirements and data processing required for empirical transient emission and torque models. The current work focuses on modelling and optimization. The unexpected result of this investigation is that when trained on transient data, simple regression models perform better than more powerful methods such as neural networks or localized regression. This result has been attributed to extrapolation over data that have estimated rather than measured transient air-handling parameters. The challenges of detecting and preventing extrapolation using statistical methods that work well with steady-state data have been explained. The concept of constraining the distribution of statistical leverage relative to the distribution of the starting solution to prevent extrapolation during the optimization process has been proposed and demonstrated. Separate from the issue of extrapolation is preventing the search from being quasi-static. Second-order linear dynamic constraint models have been proposed to prevent the search from returning solutions that are feasible if each point were run at steady state, but which are unrealistic in a transient sense. Dynamic constraint models translate commanded parameters to actually achieved parameters that then feed into the transient emission and torque models. Combined model inaccuracies have been used to adjust the optimized solutions. To frame the optimization problem within reasonable dimensionality, the coefficients of commanded surfaces that approximate engine tables are adjusted during search iterations, each of which involves simulating the entire transient cycle. The resulting strategy, different from the corresponding manual calibration strategy and resulting in lower emissions and efficiency, is intended to improve rather than replace the manual calibration process.
Resumo:
Background Levels of differentiation among populations depend both on demographic and selective factors: genetic drift and local adaptation increase population differentiation, which is eroded by gene flow and balancing selection. We describe here the genomic distribution and the properties of genomic regions with unusually high and low levels of population differentiation in humans to assess the influence of selective and neutral processes on human genetic structure. Methods Individual SNPs of the Human Genome Diversity Panel (HGDP) showing significantly high or low levels of population differentiation were detected under a hierarchical-island model (HIM). A Hidden Markov Model allowed us to detect genomic regions or islands of high or low population differentiation. Results Under the HIM, only 1.5% of all SNPs are significant at the 1% level, but their genomic spatial distribution is significantly non-random. We find evidence that local adaptation shaped high-differentiation islands, as they are enriched for non-synonymous SNPs and overlap with previously identified candidate regions for positive selection. Moreover there is a negative relationship between the size of islands and recombination rate, which is stronger for islands overlapping with genes. Gene ontology analysis supports the role of diet as a major selective pressure in those highly differentiated islands. Low-differentiation islands are also enriched for non-synonymous SNPs, and contain an overly high proportion of genes belonging to the 'Oncogenesis' biological process. Conclusions Even though selection seems to be acting in shaping islands of high population differentiation, neutral demographic processes might have promoted the appearance of some genomic islands since i) as much as 20% of islands are in non-genic regions ii) these non-genic islands are on average two times shorter than genic islands, suggesting a more rapid erosion by recombination, and iii) most loci are strongly differentiated between Africans and non-Africans, a result consistent with known human demographic history.
Resumo:
The project aimed to use results of contamination of city vegetation with heavy metals and sulphur compounds as the basis for analysing the integral response of trees and shrubs to contamination, through a complex method of phytoindication. The results were used to draw up recommendations on pollution reduction in the city and to develop the method of phytoindication as a means of monitoring environmental pollution in St. Petersburg and other large cities. Field investigations were carried out in August 1996, and 66 descriptions of green areas were made in order to estimate the functional state of plants in the Vasileostrovsky district. Investigations of the spectrum reflecting properties of plants showed considerable variation of albedo meanings of leaves under the influence of various internal and external factors. The results indicated that lime trees most closely reflect the condition of the environment. Practically all the green areas studied were in poor condition, the only exceptions being areas of ash trees, which are more resistant to environmental pollution, and one lime-tree alley in a comparatively unpolluted street. The study identified those types of trees which are more or less resistant to complex environmental pollution and Ms. Terekhina recommends that the species in the present green areas be changed to include a higher number of the more resistant species. The turbidimetric analysis of tree barks for sulphates gave an indication of the level and spatial distribution of each pollutant, and the results also confirmed other findings that electric conductivity is a significant feature in determining the extent of sulphate pollution. In testing for various metals, the lime tree showed the highest contents for all elements except magnesium, copper, zinc, cadmium and strontium, again confirming the species' vulnerability to pollution. Medium rates of concentration in the city and environs showed that city plants concentrate 3 times as many different elements and 10 times more chromium, copper and lead than do those in the suburbs. The second stage of the study was based on the concept of phytoindication, which presupposes that changes in the relation of chemical elements in regional biological circulation under the influence of technogenesis provide a criterion for predicting displacements in people's health. There are certain basic factors in this concept. The first is that all living beings are related ecologically as well as by their evolutionary origin, and that the lower an organism is on the evolutionary scale, the less adaptational reserve it has. The second is that smaller concentrations of chemical elements are needed for toxicological influence on plants than on people and so the former's reactions to geochemical factors are easier to characterise. Visual indicational features of urban plants are well defined and can form the basis of a complex "environment - public health" analysis. Specific plant reactions reflecting atmospheric pollution and other components of urbogeosystems make it possible to determine indication criteria for predicting possible disturbances in the general state of health of the population. Thirdly the results of phytoindication investigations must be taken together with information about public health in the area. It only proved possibly to analyse general indexes of public health based on statistical data from the late 1980s and early 1990s as the data of later years were greatly influenced by social factors. These data show that the rates of illness in St. Petersburg (especially for children) are higher than in Russia as a whole, for most classes of diseases, indicating that the population there is more sensitive to the ecological state of the urban environment. The Vasileostrovsky district had the second highest sick rate for adullts, while the rate of infant mortality in the first year of life was highest there. Ms. Terekhina recommends further studies to more precisely assess the effectiveness of the methods she tested, but has drawn up a proposed map of environmental hazard for the population, taking into account prevailing wind directions.
Resumo:
PURPOSE: We studied the effects of reorganization and changes in the care process, including use of protocols for sedation and weaning from mechanical ventilation, on the use of sedative and analgesic drugs and on length of respiratory support and stay in the intensive care unit (ICU). MATERIALS AND METHODS: Three cohorts of 100 mechanically ventilated ICU patients, admitted in 1999 (baseline), 2000 (implementation I, after a change in ICU organization and in diagnostic and therapeutic approaches), and 2001 (implementation II, after introduction of protocols for weaning from mechanical ventilation and sedation), were studied retrospectively. RESULTS: Simplified Acute Physiology Score II (SAPS II), diagnostic groups, and number of organ failures were similar in all groups. Data are reported as median (interquartile range).Time on mechanical ventilation decreased from 18 (7-41) (baseline) to 12 (7-27) hours (implementation II) (P = .046), an effect which was entirely attributable to noninvasive ventilation, and length of ICU stay decreased in survivors from 37 (21-71) to 25 (19-63) hours (P = .049). The amount of morphine (P = .001) and midazolam (P = .050) decreased, whereas the amount of propofol (P = .052) and fentanyl increased (P = .001). Total Therapeutic Intervention Scoring System-28 (TISS-28) per patient decreased from 137 (99-272) to 113 (87-256) points (P = .009). Intensive care unit mortality was 19% (baseline), 8% (implementation I), and 7% (implementation II) (P = .020). CONCLUSIONS: Changes in organizational and care processes were associated with an altered pattern of sedative and analgesic drug prescription, a decrease in length of (noninvasive) respiratory support and length of stay in survivors, and decreases in resource use as measured by TISS-28 and mortality.
Resumo:
In developing countries many water distribution systems are branched networks with little redundancy. If any component in the distribution system fails, many users are left relying on secondary water sources. These sources oftentimes do not provide potable water and prolonged use leads to increased cases of water borne illnesses. Increasing redundancy in branched networks increases the reliability of the networks, but is oftentimes viewed as unaffordable. This paper presents a procedure for water system managers to use to determine which loops when added to a branch network provide the most benefit for users. Two methods are presented, one ranking the loops based on total number of users benefited, and one ranking the loops of number of vulnerable users benefited. A case study is presented using the water distribution system of Medina Bank Village, Belize. It was found that forming loops in upstream pipes connected to the main line had the potential to benefit the most users.
Resumo:
Single-screw extrusion is one of the widely used processing methods in plastics industry, which was the third largest manufacturing industry in the United States in 2007 [5]. In order to optimize the single-screw extrusion process, tremendous efforts have been devoted for development of accurate models in the last fifty years, especially for polymer melting in screw extruders. This has led to a good qualitative understanding of the melting process; however, quantitative predictions of melting from various models often have a large error in comparison to the experimental data. Thus, even nowadays, process parameters and the geometry of the extruder channel for the single-screw extrusion are determined by trial and error. Since new polymers are developed frequently, finding the optimum parameters to extrude these polymers by trial and error is costly and time consuming. In order to reduce the time and experimental work required for optimizing the process parameters and the geometry of the extruder channel for a given polymer, the main goal of this research was to perform a coordinated experimental and numerical investigation of melting in screw extrusion. In this work, a full three-dimensional finite element simulation of the two-phase flow in the melting and metering zones of a single-screw extruder was performed by solving the conservation equations for mass, momentum, and energy. The only attempt for such a three-dimensional simulation of melting in screw extruder was more than twenty years back. However, that work had only a limited success because of the capability of computers and mathematical algorithms available at that time. The dramatic improvement of computational power and mathematical knowledge now make it possible to run full 3-D simulations of two-phase flow in single-screw extruders on a desktop PC. In order to verify the numerical predictions from the full 3-D simulations of two-phase flow in single-screw extruders, a detailed experimental study was performed. This experimental study included Maddock screw-freezing experiments, Screw Simulator experiments and material characterization experiments. Maddock screw-freezing experiments were performed in order to visualize the melting profile along the single-screw extruder channel with different screw geometry configurations. These melting profiles were compared with the simulation results. Screw Simulator experiments were performed to collect the shear stress and melting flux data for various polymers. Cone and plate viscometer experiments were performed to obtain the shear viscosity data which is needed in the simulations. An optimization code was developed to optimize two screw geometry parameters, namely, screw lead (pitch) and depth in the metering section of a single-screw extruder, such that the output rate of the extruder was maximized without exceeding the maximum temperature value specified at the exit of the extruder. This optimization code used a mesh partitioning technique in order to obtain the flow domain. The simulations in this flow domain was performed using the code developed to simulate the two-phase flow in single-screw extruders.
Resumo:
An extrusion die is used to continuously produce parts with a constant cross section; such as sheets, pipes, tire components and more complex shapes such as window seals. The die is fed by a screw extruder when polymers are used. The extruder melts, mixes and pressures the material by the rotation of either a single or double screw. The polymer can then be continuously forced through the die producing a long part in the shape of the die outlet. The extruded section is then cut to the desired length. Generally, the primary target of a well designed die is to produce a uniform outlet velocity without excessively raising the pressure required to extrude the polymer through the die. Other properties such as temperature uniformity and residence time are also important but are not directly considered in this work. Designing dies for optimal outlet velocity variation using simple analytical equations are feasible for basic die geometries or simple channels. Due to the complexity of die geometry and of polymer material properties design of complex dies by analytical methods is difficult. For complex dies iterative methods must be used to optimize dies. An automated iterative method is desired for die optimization. To automate the design and optimization of an extrusion die two issues must be dealt with. The first is how to generate a new mesh for each iteration. In this work, this is approached by modifying a Parasolid file that describes a CAD part. This file is then used in a commercial meshing software. Skewing the initial mesh to produce a new geometry was also employed as a second option. The second issue is an optimization problem with the presence of noise stemming from variations in the mesh and cumulative truncation errors. In this work a simplex method and a modified trust region method were employed for automated optimization of die geometries. For the trust region a discreet derivative and a BFGS Hessian approximation were used. To deal with the noise in the function the trust region method was modified to automatically adjust the discreet derivative step size and the trust region based on changes in noise and function contour. Generally uniformity of velocity at exit of the extrusion die can be improved by increasing resistance across the die but this is limited by the pressure capabilities of the extruder. In optimization, a penalty factor that increases exponentially from the pressure limit is applied. This penalty can be applied in two different ways; the first only to the designs which exceed the pressure limit, the second to both designs above and below the pressure limit. Both of these methods were tested and compared in this work.
Resumo:
A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.
Resumo:
Wind energy has been one of the most growing sectors of the nation’s renewable energy portfolio for the past decade, and the same tendency is being projected for the upcoming years given the aggressive governmental policies for the reduction of fossil fuel dependency. Great technological expectation and outstanding commercial penetration has shown the so called Horizontal Axis Wind Turbines (HAWT) technologies. Given its great acceptance, size evolution of wind turbines over time has increased exponentially. However, safety and economical concerns have emerged as a result of the newly design tendencies for massive scale wind turbine structures presenting high slenderness ratios and complex shapes, typically located in remote areas (e.g. offshore wind farms). In this regard, safety operation requires not only having first-hand information regarding actual structural dynamic conditions under aerodynamic action, but also a deep understanding of the environmental factors in which these multibody rotating structures operate. Given the cyclo-stochastic patterns of the wind loading exerting pressure on a HAWT, a probabilistic framework is appropriate to characterize the risk of failure in terms of resistance and serviceability conditions, at any given time. Furthermore, sources of uncertainty such as material imperfections, buffeting and flutter, aeroelastic damping, gyroscopic effects, turbulence, among others, have pleaded for the use of a more sophisticated mathematical framework that could properly handle all these sources of indetermination. The attainable modeling complexity that arises as a result of these characterizations demands a data-driven experimental validation methodology to calibrate and corroborate the model. For this aim, System Identification (SI) techniques offer a spectrum of well-established numerical methods appropriated for stationary, deterministic, and data-driven numerical schemes, capable of predicting actual dynamic states (eigenrealizations) of traditional time-invariant dynamic systems. As a consequence, it is proposed a modified data-driven SI metric based on the so called Subspace Realization Theory, now adapted for stochastic non-stationary and timevarying systems, as is the case of HAWT’s complex aerodynamics. Simultaneously, this investigation explores the characterization of the turbine loading and response envelopes for critical failure modes of the structural components the wind turbine is made of. In the long run, both aerodynamic framework (theoretical model) and system identification (experimental model) will be merged in a numerical engine formulated as a search algorithm for model updating, also known as Adaptive Simulated Annealing (ASA) process. This iterative engine is based on a set of function minimizations computed by a metric called Modal Assurance Criterion (MAC). In summary, the Thesis is composed of four major parts: (1) development of an analytical aerodynamic framework that predicts interacted wind-structure stochastic loads on wind turbine components; (2) development of a novel tapered-swept-corved Spinning Finite Element (SFE) that includes dampedgyroscopic effects and axial-flexural-torsional coupling; (3) a novel data-driven structural health monitoring (SHM) algorithm via stochastic subspace identification methods; and (4) a numerical search (optimization) engine based on ASA and MAC capable of updating the SFE aerodynamic model.
Resumo:
In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease." The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.
Resumo:
Since 2010, the client base of online-trading service providers has grown significantly. Such companies enable small investors to access the stock market at advantageous rates. Because small investors buy and sell stocks in moderate amounts, they should consider fixed transaction costs, integral transaction units, and dividends when selecting their portfolio. In this paper, we consider the small investor’s problem of investing capital in stocks in a way that maximizes the expected portfolio return and guarantees that the portfolio risk does not exceed a prescribed risk level. Portfolio-optimization models known from the literature are in general designed for institutional investors and do not consider the specific constraints of small investors. We therefore extend four well-known portfolio-optimization models to make them applicable for small investors. We consider one nonlinear model that uses variance as a risk measure and three linear models that use the mean absolute deviation from the portfolio return, the maximum loss, and the conditional value-at-risk as risk measures. We extend all models to consider piecewise-constant transaction costs, integral transaction units, and dividends. In an out-of-sample experiment based on Swiss stock-market data and the cost structure of the online-trading service provider Swissquote, we apply both the basic models and the extended models; the former represent the perspective of an institutional investor, and the latter the perspective of a small investor. The basic models compute portfolios that yield on average a slightly higher return than the portfolios computed with the extended models. However, all generated portfolios yield on average a higher return than the Swiss performance index. There are considerable differences between the four risk measures with respect to the mean realized portfolio return and the standard deviation of the realized portfolio return.