952 resultados para Electron-microscope Investigations
Resumo:
In this paper, a novel template of carbon foam is used in building hierarchical structures of TiO2, CeO2, and ZrO2. They had multiscale morphologies, from nanowalls, nanoparticles to layer nanostructures. Oil a hundred-micron scale, the product was a sponge-like material constructed by nanowalls. On a hundred-nanometer scale, the electron microscope images showed that the nanowalls were porous and assembled by polycrystalline nanoparticles. Meanwhile, on one nanometer scale, many nanoparticles exhibited layer nanostructures with about 1.1 run of thickness and spacing. In mechanism section, the process analysis and characterizations suggested that the hierarchical structures were the combined result of two templates in a "one-pot" reaction. The mesoporous nanowalls were derived from carbon foams, while the layer nanostructures were the replicas of graphite sheets. The method has potential utilizations in preparation of various adsorbent and catalyst.
Resumo:
Microstructures and mechanical properties of the Mg-7Y-4Gd-xZn-0.4Zr (x = 0.5, 1.5, 3, and 5 wt.%) alloys in the as-cast, as-extruded, and peak-aged conditions have been investigated by using optical microscopy, scanning electron microscope, X-ray diffraction, and transmission electron microscopy. It is found that the peak-aged Mg-7Y-4Gd-1.5Zn-0.4Zr alloys have the highest strength after aging at 220 A degrees C. The highest ultimate tensile strength and yield tensile strength are 418 and 320 MPa, respectively. The addition of 1.5 wt.% Zn to the based alloys results in a greater aging effect and better mechanical properties at both room and elevated temperatures. The improved mechanical properties are mainly ascribed to both a fine beta' phase and a long periodic stacking-ordered structure, which coexist together in the peak-aged alloys.
Resumo:
In this study, ZnO nanowire arrays with different orientations were prepared. Confocal laser scanning microscopy (CLSM) and field- emission scanning electron microscope (FE- SEM) technique were employed for understanding the disparities in antibacterial activity between different orientations of ZnO nanoarrays. The effects of the different planes of ZnO nanowire were also discussed for the first time.
Resumo:
Syndiotactic 1,2-polybutadiene (s-PB) is a typical thermoplastic elastomer with various applications because of its high reactivity. In the past, it is difficult to form s-PB fibers with a diameter below 10 mu m because of the limitation of the conventional method such as melt spinning. Here, we report for the first time on the production of s-PB nanofibers by using a simple electrospinning method. Ultrafine s-PB fibers without beads were electrospun from s-PB solutions in dichloromethane and characterized by environmental scanning electron microscope (ESEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). At 4 wt.% concentration of s-PB, the average diameter of s-PB was about 130 nm. We found that dichloromethane was a unique suitable solvent for the electrospinning of s-PB fibers, and the structure of syndiotactic was changed through the electrospinning process.
Resumo:
Nanocomposites based on poly(iminosebacoyl imino-decamethylene) (PA1010) and multiwall carbon nanotubes (MWNTs) were successfully prepared by melt blending technique. environmental scanning electron microscope micrographs of the fracture surfaces showed that not only is there an evenly dispersion of MWNTs throughout the PA1010 matrix but also a strongly interfacial adhesion with the matrix. The combined effect of more defects on MWNTs and low temperature buckling fracture is mainly responsible for the broken tubes. Differential scanning calorimeter results showed that the MWNTs acted as a nucleation agent and increased the crystallization rate and decreased crystallite size. In the linear region, rheological measurements showed a distinct change in the frequency dependence of storage modulus, loss modulus, and complex viscosity particularly at low frequencies. We conclude that the rheological percolation threshold might occur when the content of MWNTs is over 2 wt% in the composites.
Resumo:
The Mg-8Zn-8Al-4RE (RE = mischmetal, mass%) magnesium alloy was prepared by using casting method. The microstructure and mechanical properties of as-cast alloy, solid solution alloy and aged alloy samples have been investigated. Optical microscopy, X-ray diffractometery and scanning electron microscope attached energy spectrometer were used to characterize the microstructure and phase composition for the alloy. Net shaped tau-Mg-32(Al,Zn)(49) phase was obtained at the grain boundary, and needle-like or blocky Al11RE3 phase disperses in grain boundary and alpha-Mg matrix. The tau-Mg-32(Al,Zn)(49) phase disappeared during solution treatment and a new phase of Al(2)CeZn2 formed during subsequent age treatment. The mechanical properties were performed by universal testing machine at room temperature, 150 degrees C and 200 degrees C, separately. The ultimate tensile strength of as-cast alloy is lower compared to an age treatment alloy at 200 degrees C for 12h. The strengths decreased with enhancing test temperature, but elongation has not been effect by age treatment.
Resumo:
Organic-inorganic hybrids containing luminescent lanthanide complex Eu(tta)(3)Phen (tta = thenoyltrifluoroaceton, phen = 1,10-phenanthroline) and silver nanoparticles have been prepared via mixing rare earth complex and nanoparticles with the precursors of di-ureasil using a sol-gel process. The obtained hybrid materials with transparent and elastomeric features were characterized by transmission electron microscope, solid-state Si-29 magic-angle spinning NMR spectra, diffuse reflectance, UV-visible absorption and photoluminescence spectroscopies. The effect of the silver nanoparticles on the luminescence properties was investigated. The experimental results showed that the luminescence intensity of the Eu(tta)(3)phen complex could be enhanced by less than ca. 9.5 nM of silver nanoparticles with the average diameter of 4 nm, and reached its maximum at the concentration of ca. 3.6 nM. Further increasing the concentration of the silver nanoparticles (> 9.5 nM) made the luminescence quenched. The enchancement and quench mechnism was discussed.
Resumo:
Crystalline Y2O3:Eu is of paramount significance in rare earth materials and research on luminescence spectra. In this work, the nanocrystalline Y2O3:Eu was coated with silica by a facile solid state reaction method at room temperature. The transmission electron microscope (TEM) photographs showed that the prepared Y2O3:Eu particle is polycrystalline with the size of 20 nm, the size of silica-coated particle is about 25 nm. The XPS spectra indicated that the silica layer is likely to interact with Y2O3:Eu by a Si-O-Y chemical bond. The luminescence spectra showed that the intensity of ground samples is lower than that of unground ones, the intensity of silica-coated phosphors is higher than that of the ground samples, while almost the same as that of the unground ones. Therefore, the silica coating decreases the surface defects of nanoparticles of the nanocrystalline Y2O3:Eu, thus increasing their luminescent intensity.
Resumo:
La2Zr2O7 (LZ) is a promising thermal barrier coating material for the high-temperature applications, which could be significantly toughened by the YAG nanopowder incorporated into the matrix. The composites of xYAG/(1-x)LZ (Y=10, 15, 20 vol. %, LZ-x-YAG) were densified by means of high-pressure sintering (HPS) under a pressure of 4.5 GPa at 1650 degrees C for 5 min, by which a high-relative density above 93% could be obtained. The morphologies of the fractured surfaces were investigated by the scanning electron microscope, and the fracture toughness and Vicker's-hardness of the composites were evaluated by the microindentation. The grain size of the LZ matrix drops significantly with the addition of YAG nanoparticles and the fracture type changes from the intergranular to a mixture type of the transgranular and intergranular in the nanocomposites. The LZ-20-YAG nanocomposite has a fracture toughness of 1.93 MPa m(1/2), which is obviously higher than that of the pure LZ (1.57 MPa m(1/2)), and the toughening mechanism is discussed in this paper.
Resumo:
Composite fibers composed of poly(L-lactide)-grafted hydroxyapatite (PLA-g-HAP) nanoparticles and polylactide (PLA) matrix were prepared by electro-spinning. Environmental scanning electron microscope (ESEM) and transmission electron microscopy (TEM) were employed to investigate the morphology of the composite fibers and the distribution of PLA-g-HAP nanoparticles in the fibers, respectively. At a low content (similar to 4 wt%) of PLA-g-HAP, the nanoparticles dispersed uniformly in the fibers and the composite fibrous mats exhibited higher strength properties, compared with the pristine PLA fiber mats and the simple hydroxyapatite/PLA blend fiber mats. But when the content of PLA-g-HAP further increased, the nanoparticles began to aggregate, which resulted in the deterioration of the mechanical properties of the composite fiber mats. The degradation behaviors of the composite fiber mats were closely related to the content of PLA-g-HAP. At a low PLA-g-HAP content, degradation may be delayed due to the reduction of autocatalytic degradation of PLA. When PLA-g-HAP content was high, degradation rate increased because of the enhanced wettability of the composite fibers and the escape of the nanoparticles from fiber surfaces during incubation.
Resumo:
Nano-hydroxyapatite (HA)/poly(L-lactide) (PLLA) composite microspheres with relatively uniform size distribution were prepared by a solid-in-oil-in-water (s/o/w) emusion solvent evaporation method. The encapsulation of the HA nanopaticles in microshperes was significantly improved by grafting PLLA on the surface of the HA nanoparticles (p-HA) during emulsion process. This procedure gave a possibility to obtain p-HA/PLLA composite microspheres with uniform morphology and the encapsulated p-HA nanoparticle loading reached up to 40 wt% (33 wt% of pure HA) in the p-HA/PLLA composite microspheres. The microstructure of composite microspheres from core-shell to single phase changed with the variation of p-HA to PLLA ratios. p-HA/PLLA composite microspheres with the diameter range of 2-3 mu m were obtained. The entrapment efficiency of p-HA in microspheres could high up to 90 wt% and that of HA was only 13 wt%. Surface and bulk characterizations of the composite microspheres were performed by measurements such as wide angle X-ray diffraction (WAXD), thermal gravimetric analysis (TGA), environmental scanning electron microscope (ESEM) and transmission electron microscopy (TEM).
Resumo:
Plasticized poly(L-lactide)-silica nanocomposite materials have been successfully synthesized by sol-gel process. The resultant nanocomposites were characterized by infrared spectra (IR), X-ray diffraction (XRD), thermogravimetry (TG), Tensile testing and scanning electron microscope (SEM). IR measurements show that vibration of C-O-C group is confined by silica network. Also the crystallization of poly (L-lactide) is partly confined by silica network. The presence of even small amount of silica largely improves the tensile strength of the samples, TGA results reveal that the thermal stability of samples is improved with silica loading.
Resumo:
Multi-walled carbon nanotubes (MWCNTs) were efficiently synthesized by catalytic combustion of polypropylene (PP) using nickel compounds (such as Ni2O3, NiO, Ni(OH)(2) and NiCO3 (.) 2Ni(OH)(2)) as catalysts in the presence of organic-modified montmorillonite (OMMT) at 630-830 degrees C. Morphologies of the sample undergoing different combustion times were observed to investigate actual process producing MWCNTs by this method. The obtained MWCNTs were characterized by X-ray diffraction (XRD), transmission electron microscope and Raman spectroscopy. The yield of MWCNTs was affected by the composition of PP mixtures with OMMT and nickel compounds and the combustion temperature. The proton acidic sites from the degraded OMMT layers due to the Hoffman reaction of the modifiers at high temperature played an important role in the catalytic degradation of PP to supply carbon sources that are easy to be catalyzed by nickel catalyst for the growth of MWCNTs. The XRD measurements demonstrated that the nickel compounds were in situ reduced into the Ni(0) state with the aid of hydrogen gas and/or hydrocarbons in the degradation products of PP, and the Ni(O) was really the active site for the growth of MWCNTs. The combination of nickel compounds with OMMT was a key factor to efficiently synthesize MWCNTs via catalytic combustion of PP.
Resumo:
Organically modified montmorillonites (OMMTs) by octadecylammonium chloride with two adsorption levels were dispersed in polyamide 12 (PA12) matrices with two molecular weights for different melt mixing times in order to investigate morphology evolutions and factors influencing fabrication of PA12 nanocomposites. Different adsorption levels of the modifier in the OMMTs provide different environments for diffusion of polymer chains and different attractions between MMT layers. Wide-angle X-ray diffraction (WAXD), transmission electron microscope (TEM) and gas permeability were used to characterize morphologies of the nanocomposites. Both OMMTs can be exfoliated in the PA12 matrix with higher molecular weight, but only OMMT with lower adsorption level can be exfoliated in the PA12 matrix with lower molecular weight. It was attributed to the differences in the levels of shear stress and molecular diffusion in the nanocomposites. The exfoliation of OMMT platelets results from a combination of molecular diffusion and shear. After intercalation of PA12 into interlayer of OMMT in the initial period of mixing, further dispersion of OMMTs in PA12 matrices is controlled by a slippage process of MMT layers during fabricating PA12 nanocomposites with exfoliated structure.
Resumo:
Polyethylene (PE) chains grafted onto the sidewalls of SWCNTs (SWCNT-g-PE) were successfully synthesized via ethylene copolymerization with functionalized single-walled carbon nanotubes (f-SWCNTs) catalyzed by rac-(en)(THInd)(2)ZrCl2/ MAO. Here f-SWCNTs, in which alpha-alkene groups were chemically linked on the sidewalls of SWCNTs, were synthesized by Prato reaction. The composition and microstructure of SWCNT-g-PE were characterized by means of H-1 NMR, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analyses (TGA), field-emission scanning electron microscope (FESEM), and transmission electron microscope (TEM). Nanosized cable-like structure was formed in the SWCNT-g-PE, in which the PE formed a tubular shell and several SWCNTs bundles existed as core. The formation of the above morphology in the SWCNT-g-PE resulted from successfully grafting of PE chains onto the surface of SWCNTs via copolymerization. The grown PE chains grafted onto the sidewall of the f-SWCNTs promoted the exfoliation of the mass nanotubes. Comparing with pure PE, the physical mixture of PE/f-SWCNTs and in situ PE/SWCNTs mixture, thermal stability, and mechanical properties of SWCNT-g-PE were higher because of the chemical bonding between the f-SWCNTs and PE chains.