930 resultados para Dye photolysis
Resumo:
Perinatal mortality rate is an important mark to evaluate women and perinatal health care. It is of utmost importance to know causes and the evolution of its two components aiming to improve health care in different fields – sanitary conditions, diagnosis and treatment of infectious disease, immunisations, diagnosing and caring for medical diseases induced by pregnancy or directly related to it, providing skilled birth attendance, preventing birth asphyxia, preventing preterm birth complications and infections. In high-income countries the epidemiology varies mainly with social and economic conditions; in low-income countries, paired with poverty, undernutrition, superstition, lack of medical care, deficient basic sanitary conditions are also found. Also, in rich countries, responsible for 1% of deaths, data are published and improvements evaluated, while in low-income countries responsible for 99% of deaths numbers and causes are unknown, making difficult to implement cost effective interventions, a reason why “stillbirth rates in low-income countries are now where they were in high-income countries 50 to 100 years ago”. Knowledge on causes of death are very important as often what is needed are “simple” measures as improvement of sanitary conditions and immunisation programmes rather than high technologies. About four million babies dye each year in the first 28 days of life and another 3 million dye before birth in the third-trimester, with 98% occurring in low-income and middle income countries and more than 1 million occurring during labour and delivery. Classically stillbirths are the major component of perinatal mortality rate. Causes of death are even more difficult to know. In low-income countries a great proportion of women give birth at home. Worldwide the main causes of stillbirth are asphyxia due to obstructed labour, eclampsia, abruption placenta and umbilical cord complications - making valid the assumption that skilled birth attendance would decrease stillbirth; and infection - chorioamnioitis, syphilis and malaria. In high-income countries placental pathology and infection, congenital anomalies, complications of preterm birth and post term delivery, are the most common. If in low-income countries famine and lack of provisions and health care are common, in high-income countries, advanced maternal age and diabetes, obesity, hypertension, smoking, are frequent findings.
Resumo:
As células foto voltaicas orgânicas ou células de Gräetzel (depois do seu descobridor) são aparelhos para a colecta de energia solar que utilizam um semicondutor inorgânico e uma molécula orgânica. Dita molécula orgânica é capaz de excitar-se na presença de radiação electromagnética e ceder esta energia através da doação de electrões a este semicondutor. Embora estas estruturas e o seu processo de fabrico sejam relativamente pouco onerosas, o aproveitamento da energia solar é ainda muito baixo. Para além desta deficiência, os corantes sintéticos sofrem de “bleaching” ou então são reduzidos ou oxidados facilmente quando não conseguem transferir a energia que foi absorvida ou quando é difícil voltar ao estado original por dificuldades no completamento de circulação de electrões. Neste trabalho pretende-se então estudar o comportamento de moléculas e misturas complexas de moléculas com capacidade para serem excitadas pela luz solar. Como a dita xcitação promove a transferência de um electrão, este processo será seguido pela técnica de Voltametria cíclica. Como substâncias absorventes de luz utilizaremos compostos naturais (principalmente flavonóides) puros, ou então na forma de complexos naturais extraídos de algumas plantas. Estas misturas de corantes serão extractos aquosos (infusões) de casca de laranja e limão assim como extractos de folhas de cerejeira, com o objectivo de proporcionar lternativas aos flavonóides utilizados neste estudo. A caracterização voltamétrica desta célula é feita em diferentes formas de iluminação. Sobre a célula assim formada faz-se incidir rimeiro luz de lâmpadas fluorescentes, depois luz ultra violeta e por fim sem qualquer tipo de luz incidente. Na base do fabrico da variante mais clássica destas células está o semicondutor óxido de itânio (TiO2), por ser uma substância muito comum e barata e com propriedades semicondutoras notáveis. Uma forma comum de melhorar a eficiência deste material é introduzir dopantes com o intuito de melhorar a eficiência do processo de transferência electrónica. Um segundo objectivo deste trabalho é o estudo de sistemas semicondutor/molécula foto activa. Semicondutores como ZnO, TiO2 e TiO2 dopado serão então estudados. O gels de TiO2 ou o TiO2 dopado serão depositados sobre lâminas de vidro comum, nas quais foi anteriormente depositado uma película de alumínio que serve de condutor (eléctrodo egativo). Uma outra variante será a utilização de óxido de zinco, um semicondutor de baixo custo que por sua vez vai ser depositado em lâminas de alumínio comercial. A nossa célula foto electroquímica será então formada por moléculas de corante, uma lâmina e um semicondutor (que funcionará como eléctrodo de trabalho), com ou sem electrólito/catalizador (solução de iodo/iodeto), e eléctrodos de referência de Ag/AgCl, e outro auxiliar de grafite. Um outro objectivo é fazer um pequeno estudo sobre influencia do catalisador I2/etilenodiamina no comportamento electroquímico da célula, de forma a poder utilizar o solvente (etilenodiamina) com menor volatilidade do que a água, que é empregada no par I2/I3.m A importância deste facto prende-se com a limitada vida destas células quando o electrólito/solvente é evaporado pelas altas temperaturas da radiação incidente.
Resumo:
Thesis for the master degree in Structural and Functional Biochemistry
Resumo:
SUMMARY In a previous study our group found that the probiotic Saccharomyces boulardii was capable of reducing the intensity of infection in mice with toxocariasis. In order to assess whether the mechanism involved would be a direct action of the probiotic on Toxocara canis larvae, this study was designed. Both probiotics were singly cultivated in plates containing RPMI 1640 medium and T. canis larvae. S. boulardii and B. cereus var. toyoi cultures presented 97.6% and 95.7% of larvae with positive motility, respectively, and absence of color by the dye trypan blue, not representing significant difference to the control group (p > 0.05). We conclude that none of the probiotics showed in vitro effects on T. canis larvae and that the interaction with the intestinal mucosa is necessary for the development of the protective effect of S. boulardii.
Resumo:
The quest for new antiparasitic alternatives has led researchers to base their studies on insights into biology, host-parasite interactions and pathogenesis. In this context, proteases and their inhibitors are focused, respectively, as druggable targets and new therapy alternatives. Herein, we proposed to evaluate the in vitro effect of the cysteine protease inhibitor E-64 on Giardia trophozoites growth, adherence and viability. Trophozoites (105) were exposed to E-64 at different final concentrations, for 24, 48 and 72 h at 37 °C. In the growth and adherence assays, the number of trophozoites was estimated microscopically in a haemocytometer, whereas cell viability was evaluated by a dye-reduction assay using MTT. The E-64 inhibitor showed effect on growth, adherence and viability of trophozoites, however, its better performance was detected in the 100 µM-treated cultures. Although metronidazole was more effective, the E-64 was shown to be able to inhibit growth, adherence and viability rates by ≥ 50%. These results reveal that E-64 can interfere in some crucial processes to the parasite survival and they open perspectives for future investigations in order to confirm the real antigiardial potential of the protease inhibitors.
Resumo:
Dissertação para obtenção do Grau de Mestre em Tecnologia e Segurança Alimentar
Resumo:
Dissertação para obtenção do Grau de Doutor em Química Sustentável
Resumo:
Dissertação para obtenção do Grau de Mestre em Mestrado em Conservação e Restauro, especialização em Ciências da Conservação
Resumo:
Mesoamerican cultures had a strong tradition of written and pictorial manuscripts, called the codices. In studies already performed it was found the use of Maya Blue, made from a mixture of indigo and a clay called palygorskite, forming an incredibly stable material where the dye is trapped inside the nanotubes of the clay, after heating. However, a bigger challenge lies in the study of the yellows used, for these civilizations might have used this clay-dye mixture to produce their yellow colorants. As a first step, it was possible to provide identification, by non-invasive methods, of two colorants (a flavonoid and a carotenoid). While the flavonoid absorbed between 368-379 nm, the carotenoid would absorb around 455 nm. A temperature study also conducted allowed to set 140ºC as the desirable temperature to heat the samples without degrading them. FT-IR, conventional Raman and SERS allowed us to understand the existence of a reaction between the dyes and the clays (palygorskite and kaolinite), however it is difficult to understand it in a molecular point of view. As a second step, five species of Mexican dyes were selected on the basis of historical sources. The Maya yellow samples were produced adapting the recipe proposed by Reyes-Valerio, supporting the yellow dyes extracted from the dried plants on the clays, with addition of water, and then heated at 140ºC. It was found that the addition of water in palygorskite would increase the pH, hence deprotonating the molecules having a clear negative effect in the color. A second recipe was developed, without the addition of water; however, it was found that the use of water based binders would still alter the color of the samples with palygorskite. In this case, kaolinite without heating yield better results as a Maya yellow hybrid. It was found that the Maya chemistry might not have been the same for all the colors. The Mesoamericans might have found that different dyes could work better to their desires if matched with different clays. It was noticeable that for a clear distinction between flavonoids and carotenoids the reflectance and emission studies suffice, but when clay is added, Raman techniques will perform better. For this reason, conventional Raman and SERS were employed in order to create a database for the Mesoamerican dyestuffs for a future identification.
Resumo:
Nature has developed strategies to present us with a wide variety of colours, from the green of leaves to the bright colours seen in flowers. Anthocyanins are between these natural pigments that are responsible for the great diversity of colours seen in flowers and fruits. Anthocyanins have been used to sensitize titanium dioxide (TiO2) in Dye-Sensitized Solar Cells (DSSCs). DSSCs have become one of the most popular research topic in photovoltaic cells due to their low production costs when compared to other alternatives. DSSCs are inspired in what happens in nature during photosynthesis. A primary charge separation is achieved by means of a photoexcited dye capable of performing the electron injection into the conduction band of a wide band-gap semiconductor, usually TiO2. With this work we aimed to synthesize a novel mesoporous TiO2 structure as the semiconductor in order to increase the dye loading. We used natural occurring dyes such as anthocyanins and their synthetic flavylium relatives, as an alternative to the widely used metal complexes of Ru(II) which are expensive and are environmentally unsafe. This offers not only the chance to use safer dyes for DSSCs, but also to take profit of waste biological products, such as wine and olive oil production residues that are heavily loaded with anthocyanin dyes. We also performed a photodegradation study using TiO2 as the catalyst to degrade dye contaminants, such as those from the wine production waste, by photo-irradiation of the system in the visible region of the light spectrum. We were able to succeed in the synthesis of mesoporous TiO2 both powder and thin film, with a high capacity to load a large amount of dye. We proved the concept of photodegradation using TiO2 as catalyst. And finally, we show that wine production waste is a possible dye source to DSSCs application.
Resumo:
Abstract: INTRODUCTION: Leishmaniasis is a disease caused by the protozoan Leishmania that resides mainly in mononuclear phagocytic system tissues. Pentavalent antimonials are the main treatment option, although these drugs have toxic side effects and high resistance rates. A potentially alternative and more effective therapeutic strategy is to use liposomes as carriers of the antileishmanial agents. The aims of this study were to develop antimonial drugs entrapped into phosphatidylserine liposomes and to analyze their biological and physicochemical characteristics. METHODS: Liposomes containing meglumine antimoniate (MA) or pentavalent antimony salt (Sb) were obtained through filter extrusion (FEL) and characterized by transmission electron microscopy. Promastigotes of Leishmania infantum were incubated with the drugs and the viability was determined with a tetrazolium dye (MTT assay). The effects of these drugs against intracellular amastigotes were also evaluated by optical microscopy, and mammalian cytotoxicity was determined by an MTT assay. RESULTS: Liposomes had an average diameter of 162nm. MA-FEL showed inhibitory activity against intracellular L. infantum amastigotes, with a 50% inhibitory concentration (IC50) of 0.9μg/mL, whereas that of MA was 60μg/mL. Sb-FEL showed an IC50 value of 0.2μg/mL, whereas that of free Sb was 9μg/mL. MA-FEL and Sb-FEL had strong in vitro activity that was 63-fold and 39-fold more effective than their respective free drugs. MA-FEL tested at a ten-times higher concentration than Sb-FEL did not show cytotoxicity to mammalian cells, resulting in a higher selectivity index. CONCLUSIONS: Antimonial drug-containing liposomes are more effective against Leishmania-infected macrophages than the non-liposomal drugs.
Resumo:
The contribution of the sternocleidomastoid branch of the occipital artery (superior arterial pedicle - SAP) to the irrigation of the sternocleidomastoid muscle (SCM) was evaluated in fresh human cadavers by injecting radiological dye and a resin for microvasculature corrosion casts. From its insertion in the mastoid process of the temporal bone, the SCM was divided into superior, medium, and inferior thirds. In most of the SCM, The SAP are formed by two longitudinal parallel branches. In all specimens, the radiological dye injected into the SAP reached or trespassed the middle part of the studied SCM. The SAP was poorly distributed in the lowermost region of the inferior third of the SCM, suggesting the contribution of other arteries or pedicles. The corrosion casts of the microvasculature showed a profuse network of microscopic vessels in those levels where the SAP was detected.
Resumo:
Historically, the dorsal arterial system of the hand received less attention than the palmar system. The studies concerning dorsal arterial anatomy present some controversies regarding the origin and presence of the dorsal metacarpal artery branches. Knowledge of the anatomy of dorsal metacarpal arteries is especially applied in the surgical planning for flaps taken from the dorsum of the hand. The purpose of this study is to analyze the arterial anatomy of the dorsum of the hand, compare our observations with those of previous studies from the literature, and therefore to define parameters for surgical planning for flaps supplied by the dorsal metacarpal arteries. METHOD: Twenty-six dissections were performed at the dorsum of the right hand of 26 cadavers by making a distal-based U-shaped incision. After catheterization of the radial artery at the wrist level, a plastic dye solution with low viscosity and quick solidification was injected to allow adequate exposure of even small vessels. The radial artery and its branches, the dorsal arterial arch, the dorsal metacarpal arteries, the distal and proximal communicating branches of the palmar system, and the distal cutaneous branches were carefully dissected and identified. RESULTS: The distal cutaneous branches originating from the dorsal metacarpal arteries were observed in all cases; these were located an average of 1.2 cm proximal from the metacarpophalangeal joint. The first dorsal metacarpal artery presented in 3 different patterns regarding its course: fascial, subfascial, and mixed. The branching pattern of the radial artery at the first intermetacarpal space was its division into 3 branches. We observed the presence of the dorsal arterial arch arising from the radial artery in 100% of the cases. The distance between the dorsal arterial arch and the branching point of the radial artery was an average of 2 cm. The first and second dorsal metacarpal arteries were visualized in all cases. The third and fourth dorsal metacarpal arteries were visualized in 96.2% and 92.3% of cases, respectively. There was proximal and distal communication between the dorsal arterial arch and the palmar system through the communicating branches contributing to the dorsal metacarpal artery formation. CONCLUSION: At the dorsum of the hand there is a rich arterial net that anastomoses with the palmar arterial system. This anatomical characteristic allows the utilization of the dorsal aspect of the hand as potential donor site for cutaneous flaps.
Resumo:
Efficient liposome disruption inside the cells is a key for success with any type of drug delivery system. The efficacy of drug delivery is currently evaluated by direct visualization of labeled liposomes internalized by cells, not addressing objectively the release and distribution of the drug. Here, we propose a novel method to easily assess liposome disruption and drug release into the cytoplasm. We propose the encapsulation of the cationic dye Hoechst 34,580 to detect an increase in blue fluorescence due to its specific binding to negatively charged DNA. For that, the dye needs to be released inside the cell and translocated to the nucleus. The present approach correlates the intensity of detected fluorescent dye with liposome disruption and consequently assesses drug delivery within the cells.
Resumo:
The synthesis of a novel fused nitrogen heterocycle, benzoquinolone, for evaluation as a photocleavable protecting group is described for the first time, by coupling to model amino acids (alanine, phenylalanine and glutamic acid). Conversion of the phenylalanine ester conjugate to the thionated derivative was accomplished by reaction with Lawesson’s reagent. Photocleavage studies of the carbonyl and thiocarbonyl benzoquinolone conjugates in various solvents and at different wavelengths (300, 350 and 419 nm) showed that the most interesting result was obtained at 419 nm for the thioconjugate, revealing that the presence of the thiocarbonyl group clearly improved the photolysis rates, giving practicable irradiations times for the release of the amino acids (less than 1 minute).