915 resultados para Distributed artificial intelligence - multiagent systems
Resumo:
O artigo aborda problemas filosóficos relativos à natureza da intencionalidade e da representação mental. A primeira parte apresenta um breve histórico dos problemas, percorrendo rapidamente alguns episódios da filosofia clássica e da filosofia contemporânea. A segunda parte examina o Chinese Room Argument (Argumento do Quarto do Chinês) formulado por J. Searle. A terceira parte desenvolve alguns argumentos visando mostrar a inadequação do modelo funcionalista de mente na construção de robots. A conclusão (quarta parte) aponta algumas alternativas ao modelo funcionalista tradicional, como, por exemplo, o conexionismo.
Resumo:
The objective of the researches in artificial intelligence is to qualify the computer to execute functions that are performed by humans using knowledge and reasoning. This work was developed in the area of machine learning, that it s the study branch of artificial intelligence, being related to the project and development of algorithms and techniques capable to allow the computational learning. The objective of this work is analyzing a feature selection method for ensemble systems. The proposed method is inserted into the filter approach of feature selection method, it s using the variance and Spearman correlation to rank the feature and using the reward and punishment strategies to measure the feature importance for the identification of the classes. For each ensemble, several different configuration were used, which varied from hybrid (homogeneous) to non-hybrid (heterogeneous) structures of ensemble. They were submitted to five combining methods (voting, sum, sum weight, multiLayer Perceptron and naïve Bayes) which were applied in six distinct database (real and artificial). The classifiers applied during the experiments were k- nearest neighbor, multiLayer Perceptron, naïve Bayes and decision tree. Finally, the performance of ensemble was analyzed comparatively, using none feature selection method, using a filter approach (original) feature selection method and the proposed method. To do this comparison, a statistical test was applied, which demonstrate that there was a significant improvement in the precision of the ensembles
Resumo:
There is a need for multi-agent system designers in determining the quality of systems in the earliest phases of the development process. The architectures of the agents are also part of the design of these systems, and therefore also need to have their quality evaluated. Motivated by the important role that emotions play in our daily lives, embodied agents researchers have aimed to create agents capable of producing affective and natural interaction with users that produces a beneficial or desirable result. For this, several studies proposing architectures of agents with emotions arose without the accompaniment of appropriate methods for the assessment of these architectures. The objective of this study is to propose a methodology for evaluating architectures emotional agents, which evaluates the quality attributes of the design of architectures, in addition to evaluation of human-computer interaction, the effects on the subjective experience of users of applications that implement it. The methodology is based on a model of well-defined metrics. In assessing the quality of architectural design, the attributes assessed are: extensibility, modularity and complexity. In assessing the effects on users' subjective experience, which involves the implementation of the architecture in an application and we suggest to be the domain of computer games, the metrics are: enjoyment, felt support, warm, caring, trust, cooperation, intelligence, interestingness, naturalness of emotional reactions, believabiliy, reducing of frustration and likeability, and the average time and average attempts. We experimented with this approach and evaluate five architectures emotional agents: BDIE, DETT, Camurra-Coglio, EBDI, Emotional-BDI. Two of the architectures, BDIE and EBDI, were implemented in a version of the game Minesweeper and evaluated for human-computer interaction. In the results, DETT stood out with the best architectural design. Users who have played the version of the game with emotional agents performed better than those who played without agents. In assessing the subjective experience of users, the differences between the architectures were insignificant
Resumo:
We consider the management branch model where the random resources of the subsystem are given by the exponential distributions. The determinate equivalent is a block structure problem of quadratic programming. It is solved effectively by means of the decomposition method, which is based on iterative aggregation. The aggregation problem of the upper level is resolved analytically. This overcomes all difficulties concerning the large dimension of the main problem.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper presents an approach to integrate an artificial intelligence (AI) technique, concretely rule-based processing, into mobile agents. In particular, it focuses on the aspects of designing and implementing an appropriate inference engine of small size to reduce migration costs. The main goal is combine two lines of agent research, First, the engineering oriented approach on mobile agent architectures, and, second, the AI related approach on inference engines driven by rules expressed in a restricted subset of first-order predicate logic (FOPL). In addition to size reduction, the main functions of this type of engine were isolated, generalized and implemented as dynamic components, making possible not only their migration with the agent, but also their dynamic migration and loading on demand. A set of classes for representing and exchanging knowledge between rule-based systems was also proposed.
Resumo:
The increase of computing power of the microcomputers has stimulated the building of direct manipulation interfaces that allow graphical representation of Linear Programming (LP) models. This work discusses the components of such a graphical interface as the basis for a system to assist users in the process of formulating LP problems. In essence, this work proposes a methodology which considers the modelling task as divided into three stages which are specification of the Data Model, the Conceptual Model and the LP Model. The necessity for using Artificial Intelligence techniques in the problem conceptualisation and to help the model formulation task is illustrated.
Resumo:
An overview is given on the possibility of controlling the status of circuit breakers (CB) in a substations with the use of a knowledge base that relates some of the operation magnitudes, mixing status variables with time variables and fuzzy sets. It is shown that even when all the magnitudes to be controlled cannot be included in the analysis, it is possible to control the desired status while supervising some important magnitudes as the voltage, power factor, and harmonic distortion, as well as the present status.
Resumo:
This paper presents the overall methodology that has been used to encode both the Brazilian Portuguese WordNet (WordNet.Br) standard language-independent conceptual-semantic relations (hyponymy, co-hyponymy, meronymy, cause, and entailment) and the so-called cross-lingual conceptual-semantic relations between different wordnets. Accordingly, after contextualizing the project and outlining the current lexical database structure and statistics, it describes the WordNet.Br editing GUI that was designed to aid the linguist in carrying out the tasks of building synsets, selecting sample sentences from corpora, writing synset concept glosses, and encoding both language-independent conceptual-semantic relations and cross-lingual conceptual-semantic relations between WordNet.Br and Princeton WordNet © Springer-Verlag Berlin Heidelberg 2006.
Resumo:
The need for the representation of both semantics and common sense and its organization in a lexical database or knowledge base has motivated the development of large projects, such as Wordnets, CYC and Mikrokosmos. Besides the generic bases, another approach is the construction of ontologies for specific domains. Among the advantages of such approach there is the possibility of a greater and more detailed coverage of a specific domain and its terminology. Domain ontologies are important resources in several tasks related to the language processing, especially in those related to information retrieval and extraction in textual bases. Information retrieval or even question and answer systems can benefit from the domain knowledge represented in an ontology. Besides embracing the terminology of the field, the ontology makes the relationships among the terms explicit. Copyright 2007 ACM.
Resumo:
This paper presents a new methodology for the adjustment of fuzzy inference systems, which uses technique based on error back-propagation method. The free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules, are automatically adjusted. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through estimation of time series and by a mathematical modeling problem. More specifically, the Mackey-Glass chaotic time series is used for the validation of the proposed methodology. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
This article describes the application of an Artificial Intelligence Planner in a robotized assembly cell that can be integrated to a Flexible Manufacturing System. The objective is to allow different products to be automatically assembled in a single production line with no pre-established assembly plans. The planner function is to generate action plans to the robot, in real time, from two input information: the initial state (disposition of parts of the product in line) and the final state (configuration of the assembled product). Copyright © 2007 IFAC.
Resumo:
Several systems are currently tested in order to obtain a feasible and safe method for automation and control of grinding process. This work aims to predict the surface roughness of the parts of SAE 1020 steel ground in a surface grinding machine. Acoustic emission and electrical power signals were acquired by a commercial data acquisition system. The former from a fixed sensor placed near the workpiece and the latter from the electric induction motor that drives the grinding wheel. Both signals were digitally processed through known statistics, which with the depth of cut composed three data sets implemented to the artificial neural networks. The neural network through its mathematical logical system interpreted the signals and successful predicted the workpiece roughness. The results from the neural networks were compared to the roughness values taken from the worpieces, showing high efficiency and applicability on monitoring and controlling the grinding process. Also, a comparison among the three data sets was carried out.
Resumo:
One of the most important characteristics of intelligent activity is the ability to change behaviour according to many forms of feedback. Through learning an agent can interact with its environment to improve its performance over time. However, most of the techniques known that involves learning are time expensive, i.e., once the agent is supposed to learn over time by experimentation, the task has to be executed many times. Hence, high fidelity simulators can save a lot of time. In this context, this paper describes the framework designed to allow a team of real RoboNova-I humanoids robots to be simulated under USARSim environment. Details about the complete process of modeling and programming the robot are given, as well as the learning methodology proposed to improve robot's performance. Due to the use of a high fidelity model, the learning algorithms can be widely explored in simulation before adapted to real robots. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
A RBFN implemented with quantized parameters is proposed and the relative or limited approximation property is presented. Simulation results for sinusoidal function approximation with various quantization levels are shown. The results indicate that the network presents good approximation capability even with severe quantization. The parameter quantization decreases the memory size and circuit complexity required to store the network parameters leading to compact mixed-signal circuits proper for low-power applications. ©2008 IEEE.