901 resultados para Discrete Sliding Mode Control
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: Aging is characterized by a decline in the postural control performance, which is based on a coherent and stable coupling between sensory information and motor action. Therefore, changes in postural control in elderlies can be related to changes in this coupling. In addition, it has been observed that physical activity seems to improve postural control performance in elderlies. These improvements can be due to changes in the coupling between sensory information and motor action related to postural control. Objective: the purpose of this study was to verify the coupling between visual information and body sway in active and sedentary elderlies. Methods: Sixteen sedentary elderlies ( SE), 16 active elderlies ( AE) and 16 young adults ( YA) were asked to stand upright inside a moving room in two experimental conditions: ( 1) discrete movement and ( 2) continuous movement of the room. Results: In the continuous condition, the results showed that the coupling between the movement of the room and body sway was stronger and more stable for SE and AE compared to YA. In the discrete condition, SE showed larger body displacement compared to AE and YA. Conclusions: SE have more difficulty to discriminate and to integrate sensory information than AE and YA indicating that physical activity may improve sensory integration. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
In this paper were investigated phase-shift control strategies applied to a four cells interleaved high input-power-factor pre-regulator boost rectifier, operating in critical conduction mode, using a non-dissipative commutation cells and frequency modulation. The digital control has been developed using a hardware description language (VHDL) and implemented using the XC2S200E-SpartanII-E/Xilinx FPGA, performing a true critical conduction operation mode for a generic number of interleaved cells. Experimental results are presented, in order to verify the feasibility and performance of the proposed digital control, through the use of a Xilinx FPGA device.
Resumo:
Nowadays, networks must support applications such as: distance learning, electronic commerce, access to Internet, Intranets and Extranets, voice over IP (Internet Protocol) and many others. These new applications, employing data, voice, and video traffic, require high bandwidth and Quality of Service (QoS). The ATM (Asynchronous Transfer Mode) technology, together with dynamic resource allocation methods, offers network connections that guarantee QoS parameters, such as minimum losses and delays. This paper presents a system that uses Network Management Functions together with dynamic resource allocation for provision of the end-to-end QoS parameters for rt-VBR connections.
Resumo:
The goals of this study were to examine the visual information influence on body sway as a function of self- and object-motion perception and visual information quality. Participants that were aware (object-motion) and unaware (self-motion) of the movement of a moving room were asked to stand upright at five different distances from its frontal wall. The visual information effect on body sway decreased when participants were aware about the sensory manipulation. Moreover, while the visual influence on body sway decreased as the distance increased in the self-motion perception, no effects were observed in the object-motion mode. The overall results indicate that postural control system functioning can be altered by prior knowledge, and adaptation due to changes in sensory quality seem to occur in the self- but not in the object-motion perception mode. (C) 2004 Elsevier B.V.. All rights reserved.
Resumo:
This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The authors present an offline switching power supply with multiple isolated outputs and unity power factor with the use of only one power processing stage, based on the DC-DC SEPIC (single ended primary inductance converter) modulated by variable hysteresis current control. The principle of operation, the theoretical analysis, the design procedure, an example, and simulation results are presented. A laboratory prototype, rated at 160 W, operating at a maximum switching frequency of 100 kHz, with isolated outputs rated at +5 V/15 A -5 V/1 A, +12 V/6 A and -12 V/1 A, has been built given an input power factor near unity.
Resumo:
This paper addresses the problem of model reduction for uncertain discrete-time systems with convex bounded (polytope type) uncertainty. A reduced order precisely known model is obtained in such a way that the H2 and/or the H∞ guaranteed norm of the error between the original (uncertain) system and the reduced one is minimized. The optimization problems are formulated in terms of coupled (non-convex) LMIs - Linear Matrix Inequalities, being solved through iterative algorithms. Examples illustrate the results.
Resumo:
This paper presents a high speed current mode CMOS comparator. The comparator was optimized for allows wide range input current 1mA, ±0.5uA resolution and has fast response. This circuit was implemented with 0.8μm CMOS n-well process with area of 120μm × 105μm and operates with 3.3V(±1.65V).