948 resultados para Direct numerical simulation
Resumo:
fit the context of normalized variable formulation (NVF) of Leonard and total variation diminishing (TVD) constraints of Harten. this paper presents an extension of it previous work by the authors for solving unsteady incompressible flow problems. The main contributions of the paper are threefold. First, it presents the results of the development and implementation of a bounded high order upwind adaptative QUICKEST scheme in the 3D robust code (Freeflow), for the numerical solution of the full incompressible Navier-Stokes equations. Second, it reports numerical simulation results for 1D hock tube problem, 2D impinging jet and 2D/3D broken clam flows. Furthermore, these results are compared with existing analytical and experimental data. And third, it presents the application of the numerical method for solving 3D free surface flow problems. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved,
Resumo:
Purpose - The purpose of this paper is to develop a novel unstructured simulation approach for injection molding processes described by the Hele-Shaw model. Design/methodology/approach - The scheme involves dual dynamic meshes with active and inactive cells determined from an initial background pointset. The quasi-static pressure solution in each timestep for this evolving unstructured mesh system is approximated using a control volume finite element method formulation coupled to a corresponding modified volume of fluid method. The flow is considered to be isothermal and non-Newtonian. Findings - Supporting numerical tests and performance studies for polystyrene described by Carreau, Cross, Ellis and Power-law fluid models are conducted. Results for the present method are shown to be comparable to those from other methods for both Newtonian fluid and polystyrene fluid injected in different mold geometries. Research limitations/implications - With respect to the methodology, the background pointset infers a mesh that is dynamically reconstructed here, and there are a number of efficiency issues and improvements that would be relevant to industrial applications. For instance, one can use the pointset to construct special bases and invoke a so-called ""meshless"" scheme using the basis. This would require some interesting strategies to deal with the dynamic point enrichment of the moving front that could benefit from the present front treatment strategy. There are also issues related to mass conservation and fill-time errors that might be addressed by introducing suitable projections. The general question of ""rate of convergence"" of these schemes requires analysis. Numerical results here suggest first-order accuracy and are consistent with the approximations made, but theoretical results are not available yet for these methods. Originality/value - This novel unstructured simulation approach involves dual meshes with active and inactive cells determined from an initial background pointset: local active dual patches are constructed ""on-the-fly"" for each ""active point"" to form a dynamic virtual mesh of active elements that evolves with the moving interface.
Resumo:
The magnetic field line structure in a tokamak can be obtained by direct numerical integration of the field line equations. However, this is a lengthy procedure and the analysis of the solution may be very time-consuming. Otherwise we can use simple two-dimensional, area-preserving maps, obtained either by approximations of the magnetic field line equations, or from dynamical considerations. These maps can be quickly iterated, furnishing solutions that mirror the ones obtained from direct numerical integration, and which are useful when long-term studies of field line behavior are necessary (e.g. in diffusion calculations). In this work we focus on a set of simple tokamak maps for which these advantages are specially pronounced.
Resumo:
In this note we investigate the influence of structural nonlinearity of a simple cantilever beam impacting system on its dynamic responses close to grazing incidence by a means of numerical simulation. To obtain a clear picture of this effect we considered two systems exhibiting impacting motion, where the primary stiffness is either linear (piecewise linear system) or nonlinear (piecewise nonlinear system). Two systems were studied by constructing bifurcation diagrams, basins of attractions, Lyapunov exponents and parameter plots. In our analysis we focused on the grazing transitions from no impact to impact motion. We observed that the dynamic responses of these two similar systems are qualitatively different around the grazing transitions. For the piecewise linear system, we identified on the parameter space a considerable region with chaotic behaviour, while for the piecewise nonlinear system we found just periodic attractors. We postulate that the structural nonlinearity of the cantilever impacting beam suppresses chaos near grazing. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
O presente trabalho tem como objetivo estudar o comportamento de camadas superficiais de solo melhorado como base de fundações superficiais. Nesta pesquisa foram realizados ensaios de placa de 30 cm de diâmetro sobre camadas de solo residual compactado e de solo tratado com cimento (teor de 5% de cimento), ambas com 60 cm de espessura. O programa experimental também incluiu a retirada de amostras de campo das camadas de solo melhorado para a execução de ensaios triaxiais drenados (CID) com medida interna de deformações, a fim de obter parâmetros constitutivos para a realização de simulações numéricas. Uma comparação entre os resultados dos ensaios triaxiais com amostras retiradas em campo e moldadas em laboratório (Rohlfes Junior, 1996) é apresentada. A diferença entre os resultados dos ensaios triaxiais com amostras de campo e laboratório foi significativa para o caso das amostras de solo melhorado com cimento, tal fato é atribuído principalmente a dificuldade de mistura em campo. O Método dos Elementos Finitos foi utilizado para simular o comportamento carga x recalque das placas assentes sobre camadas de solo melhorado. O modelo Pseudo-Elástico Não Linear (Hiperbólico) foi empregado na análise numérica para modelar o comportamento dos novos materiais. Os resultados dos ensaios de placa sobre camadas de solo melhorado demonstraram que houve um aumento significativo da capacidade de suporte, além de uma redução considerável dos recalques, quando comparados ao comportamento carga x recalque do solo natural (Cudmani, 1994). A analise do comportamento de fundações superficiais assentes em solos estratificados, através de simulações numéricas, demonstrou ser eficiente para a previsão do comportamento carga x recalque das mesmas.
Resumo:
Neste trabalho foi analisada a melhoria nas características de um solo mole quando tratado com cal, bem como a viabilidade técnica de se utilizar este novo material como uma camada suporte de fundações superficiais. O solo estudado classifica-se pedologicamente como Gley Húmico e a jazida localiza-se no município de Canoas/RS, às margens da BR 386. O trabalho teve as seguintes finalidades: realizar um estudo da influência dos diferentes teores de cal sobre as características tensão x deformação do solo tratado; verificar o ganho de resistência com o tempo de cura; modelar o comportamerito tensão x deformação do material tratado; realizar simulações numéricas, através do Método dos Elementos Finitos, do comportamento carga x recalque de fundações continuas flexíveis assentes sobre o novo material. Adotou-se o teor ótimo de cal (obtido pelo método de Eades & Grim, 1966) de 9% e dois valores inferiores de 7% e 5%. Realizaram-se os seguintes ensaios sobre o solo natural e as misturas de solo-cal: limites de Atterberg, compactação, granulometria, difratograma de raio X, permeabilidade (triaxial) e ensaios triaxiais adensados não drenados(CIU). Todos os ensaios foram realizados para três tempos de cura (7, 28 e 90 dias) e os corpos de prova foram curados em câmara úmida. Para modelar o comportamento tensão x deformação do solo melhorado, adotou-se o Modelo Hiperbólico e para o solo natural o Modelo Cam-Clay Modificado. O Modelo Hiperbólico foi implementado no software CRISPSO, desenvolvido na Universidade de Cambridge, Inglaterra. O software foi utilizado em um estudo paramétrico para determinar a influência do processo de estabilização no comportamento carga x recalque de fundações superficiais. Dos resultados obtidos, concluiu-se: que o método de Eades & Grim (1966) não mostrou-se adequado para determinação do teor ótimo de cal; houve, de maneira geral, melhora nas características físicas com o tratamento com cal; não houve ganho de resistência com o tempo de cura; o modelo hiperbólico representou bem o comportamento das misturas de solo cal e a colocação de uma camada de solo tratado apresenta melhoras no comportamento carga x recalque de fundações superficiais contínuas flexíveis.
Resumo:
The research and development of wind turbine blades are essential to keep pace with worldwide growth in the renewable energy sector. Although currently blades are typically produced using glass fiber reinforced composite materials, the tendency for larger size blades, particularly for offshore applications, has increased the interest on carbon fiber reinforced composites because of the potential for increased stiffness and weight reduction. In this study a model of blade designed for large generators (5 MW) was studied on a small scale. A numerical simulation was performed to determine the aerodynamic loading using a Computational Fluid Dynamics (CFD) software. Two blades were then designed and manufactured using epoxy matrix composites: one reinforced with glass fibers and the other with carbon fibers. For the structural calculations, maximum stress failure criterion was adopted. The blades were manufactured by Vacuum Assisted Resin Transfer Molding (VARTM), typical for this type of component. A weight comparison of the two blades was performed and the weight of the carbon fiber blade was approximately 45% of the weight of the fiberglass reinforced blade. Static bending tests were carried out on the blades for various percentages of the design load and deflections measurements were compared with the values obtained from finite element simulations. A good agreement was observed between the measured and calculated deflections. In summary, the results of this study confirm that the low density combined with high mechanical properties of carbon fibers are particularly attractive for the production of large size wind turbine blades
Resumo:
One of the main activities in the petroleum engineering is to estimate the oil production in the existing oil reserves. The calculation of these reserves is crucial to determine the economical feasibility of your explotation. Currently, the petroleum industry is facing problems to analyze production due to the exponentially increasing amount of data provided by the production facilities. Conventional reservoir modeling techniques like numerical reservoir simulation and visualization were well developed and are available. This work proposes intelligent methods, like artificial neural networks, to predict the oil production and compare the results with the ones obtained by the numerical simulation, method quite a lot used in the practice to realization of the oil production prediction behavior. The artificial neural networks will be used due your learning, adaptation and interpolation capabilities
Resumo:
In Brazilian Northeast there are reservoirs with heavy oil, which use steam flooding as a recovery method. This process allows to reduce oil viscosity, increasing its mobility and consequently its oil recovery. Steam injection is a thermal method and can occurs in continues or cyclic form. Cyclic steam stimulation (CSS) can be repeated several times. Each cycle consisting of three stages: steam injection, soaking time and production phase. CSS becomes less efficient with an increase of number of cycles. Thus, this work aims to study the influence of compositional models in cyclic steam injection and the effects of some parameters, such like: flow injection, steam quality and temperature of steam injected, analyzing the influence of pseudocomponents numbers on oil rate, cumulative oil, oil recovery and simulation time. In the situations analyzed was compared the model of fluid of three phases and three components known as Blackoil . Simulations were done using commercial software (CMG), it was analyzed a homogeneous reservoir with characteristics similar to those found in Brazilian Northeast. It was observed that an increase of components number, increase the time spent in simulation. As for analyzed parameters, it appears that the steam rate, and steam quality has influence on cumulative oil and oil recovery. The number of components did not a lot influenced on oil recovery, however it has influenced on gas production
Resumo:
The occurrence of heavy oil reservoirs have increased substantially and, due to the high viscosity characteristic of this type of oil, conventional recovery methods can not be applied. Thermal methods have been studied for the recovery of this type of oil, with a main objective to reduce its viscosity, by increasing the reservoir temperature, favoring the mobility of the oil and allowing an increasing in the productivity rate of the fields. In situ combustion (ISC) is a thermal recovery method in which heat is produced inside the reservoir by the combustion of part of the oil with injected oxygen, contrasting with the injection of fluid that is heated in the surface for subsequent injection, which leads to loss heat during the trajectory to the reservoir. The ISC is a favorable method for recovery of heavy oil, but it is still difficult to be field implemented. This work had as an objective the parametric analysis of ISC process applied to a semi-synthetic reservoir with characteristics of the Brazilian Northeast reservoirs using vertical production and vertical injection wells, as the air flow injection and the wells completions. For the analysis, was used a commercial program for simulation of oil reservoirs using thermal processes, called Steam, Thermal and Advanced Processes Reservoir Simulator (STARS) from Computer Modelling Group (CMG). From the results it was possible to analyze the efficiency of the ISC process in heavy oil reservoirs by increasing the reservoir temperature, providing a large decrease in oil viscosity, increasing its mobility inside the reservoir, as well as the improvement in the quality of this oil and therefore increasing significantly its recovered fraction. Among the analyzed parameters, the flow rate of air injection was the one which had greater influence in ISC, obtaining higher recovery factor the higher is the flow rate of injection, due to the greater amount of oxygen while ensuring the maintenance of the combustion front
Resumo:
With the increasing of energetic consumption in the worldwile, conventional reservoirs, known by their easy exploration and exploitation, are not being enough to satisfy this demand, what has made necessary exploring unconventional reservoirs. This kind of exploration demands developing more advanced technologies to make possible to exploit those hydrocarbons. Tight gas is an example of this kind of unconventional reservoir. It refers to sandstone fields with low porosity, around 8%, and permeabilities between 0.1 and 0.0001 mD, which accumulates considerable amounts of natural gas. That natural gas can only be extracted by applying hydraulic fracturing, aiming at stimulating the reservoir, by creating a preferential way through the reservoir to the well, changing and making easier the flow of fluids, thus increasing the productivity of those reservoirs. Therefore, the objective of this thesis is analyzing the recovery factor of a reservoir by applying hydraulic fracturing. All the studies were performed through simulations using the IMEX software, by CMG (Computer Modelling Group), in it 2012.10 version