900 resultados para Data security


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internet users consume online targeted advertising based on information collected about them and voluntarily share personal information in social networks. Sensor information and data from smart-phones is collected and used by applications, sometimes in unclear ways. As it happens today with smartphones, in the near future sensors will be shipped in all types of connected devices, enabling ubiquitous information gathering from the physical environment, enabling the vision of Ambient Intelligence. The value of gathered data, if not obvious, can be harnessed through data mining techniques and put to use by enabling personalized and tailored services as well as business intelligence practices, fueling the digital economy. However, the ever-expanding information gathering and use undermines the privacy conceptions of the past. Natural social practices of managing privacy in daily relations are overridden by socially-awkward communication tools, service providers struggle with security issues resulting in harmful data leaks, governments use mass surveillance techniques, the incentives of the digital economy threaten consumer privacy, and the advancement of consumergrade data-gathering technology enables new inter-personal abuses. A wide range of fields attempts to address technology-related privacy problems, however they vary immensely in terms of assumptions, scope and approach. Privacy of future use cases is typically handled vertically, instead of building upon previous work that can be re-contextualized, while current privacy problems are typically addressed per type in a more focused way. Because significant effort was required to make sense of the relations and structure of privacy-related work, this thesis attempts to transmit a structured view of it. It is multi-disciplinary - from cryptography to economics, including distributed systems and information theory - and addresses privacy issues of different natures. As existing work is framed and discussed, the contributions to the state-of-theart done in the scope of this thesis are presented. The contributions add to five distinct areas: 1) identity in distributed systems; 2) future context-aware services; 3) event-based context management; 4) low-latency information flow control; 5) high-dimensional dataset anonymity. Finally, having laid out such landscape of the privacy-preserving work, the current and future privacy challenges are discussed, considering not only technical but also socio-economic perspectives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

B-1 Medicaid Reports -- The monthly Medicaid series of eight reports provide summaries of Medicaid eligibles, recipients served, and total payments by county, category of service, and aid category. These reports may also be known as the B-1 Reports. These reports are each available as a PDF for printing or as a CSV file for data analysis. Report Report name IAMM1800-R001--Medically Needy by County - No Spenddown and With Spenddown; IAMM1800-R002--Total Medically Needy, All Other Medicaid, and Grand Total by County; IAMM2200-R002--Monthly Expenditures by Category of Service; IAMM2200-R003--Fiscal YTD Expenditures by Category of Service; IAMM3800-R001--ICF & ICF-MR Vendor Payments by County; IAMM4400-R001--Monthly Expenditures by Eligibility Program; IAMM4400-R002--Monthly Expenditures by Category of Service by Program; IAMM4600-R002--Elderly Waiver Summary by County.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Security Onion is a Network Security Manager (NSM) platform that provides multiple Intrusion Detection Systems (IDS) including Host IDS (HIDS) and Network IDS (NIDS). Many types of data can be acquired using Security Onion for analysis. This includes data related to: Host, Network, Session, Asset, Alert and Protocols. Security Onion can be implemented as a standalone deployment with server and sensor included or with a master server and multiple sensors allowing for the system to be scaled as required. Many interfaces and tools are available for management of the system and analysis of data such as Sguil, Snorby, Squert and Enterprise Log Search and Archive (ELSA). These interfaces can be used for analysis of alerts and captured events and then can be further exported for analysis in Network Forensic Analysis Tools (NFAT) such as NetworkMiner, CapME or Xplico. The Security Onion platform also provides various methods of management such as Secure SHell (SSH) for management of server and sensors and Web client remote access. All of this with the ability to replay and analyse example malicious traffic makes the Security Onion a suitable low cost alternative for Network Security Management. In this paper, we have a feature and functionality review for the Security Onion in terms of: types of data, configuration, interface, tools and system management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose three research problems to explore the relations between trust and security in the setting of distributed computation. In the first problem, we study trust-based adversary detection in distributed consensus computation. The adversaries we consider behave arbitrarily disobeying the consensus protocol. We propose a trust-based consensus algorithm with local and global trust evaluations. The algorithm can be abstracted using a two-layer structure with the top layer running a trust-based consensus algorithm and the bottom layer as a subroutine executing a global trust update scheme. We utilize a set of pre-trusted nodes, headers, to propagate local trust opinions throughout the network. This two-layer framework is flexible in that it can be easily extensible to contain more complicated decision rules, and global trust schemes. The first problem assumes that normal nodes are homogeneous, i.e. it is guaranteed that a normal node always behaves as it is programmed. In the second and third problems however, we assume that nodes are heterogeneous, i.e, given a task, the probability that a node generates a correct answer varies from node to node. The adversaries considered in these two problems are workers from the open crowd who are either investing little efforts in the tasks assigned to them or intentionally give wrong answers to questions. In the second part of the thesis, we consider a typical crowdsourcing task that aggregates input from multiple workers as a problem in information fusion. To cope with the issue of noisy and sometimes malicious input from workers, trust is used to model workers' expertise. In a multi-domain knowledge learning task, however, using scalar-valued trust to model a worker's performance is not sufficient to reflect the worker's trustworthiness in each of the domains. To address this issue, we propose a probabilistic model to jointly infer multi-dimensional trust of workers, multi-domain properties of questions, and true labels of questions. Our model is very flexible and extensible to incorporate metadata associated with questions. To show that, we further propose two extended models, one of which handles input tasks with real-valued features and the other handles tasks with text features by incorporating topic models. Our models can effectively recover trust vectors of workers, which can be very useful in task assignment adaptive to workers' trust in the future. These results can be applied for fusion of information from multiple data sources like sensors, human input, machine learning results, or a hybrid of them. In the second subproblem, we address crowdsourcing with adversaries under logical constraints. We observe that questions are often not independent in real life applications. Instead, there are logical relations between them. Similarly, workers that provide answers are not independent of each other either. Answers given by workers with similar attributes tend to be correlated. Therefore, we propose a novel unified graphical model consisting of two layers. The top layer encodes domain knowledge which allows users to express logical relations using first-order logic rules and the bottom layer encodes a traditional crowdsourcing graphical model. Our model can be seen as a generalized probabilistic soft logic framework that encodes both logical relations and probabilistic dependencies. To solve the collective inference problem efficiently, we have devised a scalable joint inference algorithm based on the alternating direction method of multipliers. The third part of the thesis considers the problem of optimal assignment under budget constraints when workers are unreliable and sometimes malicious. In a real crowdsourcing market, each answer obtained from a worker incurs cost. The cost is associated with both the level of trustworthiness of workers and the difficulty of tasks. Typically, access to expert-level (more trustworthy) workers is more expensive than to average crowd and completion of a challenging task is more costly than a click-away question. In this problem, we address the problem of optimal assignment of heterogeneous tasks to workers of varying trust levels with budget constraints. Specifically, we design a trust-aware task allocation algorithm that takes as inputs the estimated trust of workers and pre-set budget, and outputs the optimal assignment of tasks to workers. We derive the bound of total error probability that relates to budget, trustworthiness of crowds, and costs of obtaining labels from crowds naturally. Higher budget, more trustworthy crowds, and less costly jobs result in a lower theoretical bound. Our allocation scheme does not depend on the specific design of the trust evaluation component. Therefore, it can be combined with generic trust evaluation algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power system engineers face a double challenge: to operate electric power systems within narrow stability and security margins, and to maintain high reliability. There is an acute need to better understand the dynamic nature of power systems in order to be prepared for critical situations as they arise. Innovative measurement tools, such as phasor measurement units, can capture not only the slow variation of the voltages and currents but also the underlying oscillations in a power system. Such dynamic data accessibility provides us a strong motivation and a useful tool to explore dynamic-data driven applications in power systems. To fulfill this goal, this dissertation focuses on the following three areas: Developing accurate dynamic load models and updating variable parameters based on the measurement data, applying advanced nonlinear filtering concepts and technologies to real-time identification of power system models, and addressing computational issues by implementing the balanced truncation method. By obtaining more realistic system models, together with timely updated parameters and stochastic influence consideration, we can have an accurate portrait of the ongoing phenomena in an electrical power system. Hence we can further improve state estimation, stability analysis and real-time operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wide adaptation of Internet Protocol (IP) as de facto protocol for most communication networks has established a need for developing IP capable data link layer protocol solutions for Machine to machine (M2M) and Internet of Things (IoT) networks. However, the wireless networks used for M2M and IoT applications usually lack the resources commonly associated with modern wireless communication networks. The existing IP capable data link layer solutions for wireless IoT networks provide the necessary overhead minimising and frame optimising features, but are often built to be compatible only with IPv6 and specific radio platforms. The objective of this thesis is to design IPv4 compatible data link layer for Netcontrol Oy's narrow band half-duplex packet data radio system. Based on extensive literature research, system modelling and solution concept testing, this thesis proposes the usage of tunslip protocol as the basis for the system data link layer protocol development. In addition to the functionality of tunslip, this thesis discusses the additional network, routing, compression, security and collision avoidance changes required to be made to the radio platform in order for it to be IP compatible while still being able to maintain the point-to-multipoint and multi-hop network characteristics. The data link layer design consists of the radio application, dynamic Maximum Transmission Unit (MTU) optimisation daemon and the tunslip interface. The proposed design uses tunslip for creating an IP capable data link protocol interface. The radio application receives data from tunslip and compresses the packets and uses the IP addressing information for radio network addressing and routing before forwarding the message to radio network. The dynamic MTU size optimisation daemon controls the tunslip interface maximum MTU size according to the link quality assessment calculated from the radio network diagnostic data received from the radio application. For determining the usability of tunslip as the basis for data link layer protocol, testing of the tunslip interface is conducted with both IEEE 802.15.4 radios and packet data radios. The test cases measure the radio network usability for User Datagram Protocol (UDP) based applications without applying any header or content compression. The test results for the packet data radios reveal that the typical success rate for packet reception through a single-hop link is above 99% with a round-trip-delay of 0.315s for 63B packets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data leakage is a serious issue and can result in the loss of sensitive data, compromising user accounts and details, potentially affecting millions of internet users. This paper contributes to research in online security and reducing personal footprint by evaluating the levels of privacy provided by the Firefox browser. The aim of identifying conditions that would minimize data leakage and maximize data privacy is addressed by assessing and comparing data leakage in the four possible browsing modes: normal and private modes using a browser installed on the host PC or using a portable browser from a connected USB device respectively. To provide a firm foundation for analysis, a series of carefully designed, pre-planned browsing sessions were repeated in each of the various modes of Firefox. This included low RAM environments to determine any effects low RAM may have on browser data leakage. The results show that considerable data leakage may occur within Firefox. In normal mode, all of the browsing information is stored within the Mozilla profile folder in Firefox-specific SQLite databases and sessionstore.js. While passwords were not stored as plain text, other confidential information such as credit card numbers could be recovered from the Form history under certain conditions. There is no difference when using a portable browser in normal mode, except that the Mozilla profile folder is located on the USB device rather than the host's hard disk. By comparison, private browsing reduces data leakage. Our findings confirm that no information is written to the Firefox-related locations on the hard disk or USB device during private browsing, implying that no deletion would be necessary and no remnants of data would be forensically recoverable from unallocated space. However, two aspects of data leakage occurred equally in all four browsing modes. Firstly, all of the browsing history was stored in the live RAM and was therefore accessible while the browser remained open. Secondly, in low RAM situations, the operating system caches out RAM to pagefile.sys on the host's hard disk. Irrespective of the browsing mode used, this may include Firefox history elements which can then remain forensically recoverable for considerable time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper applies a stochastic viability approach to a tropical small-scale fishery, offering a theoretical and empirical example of ecosystem-based fishery management approach that accounts for food security. The model integrates multi-species, multi-fleet and uncertainty as well as profitability, food production, and demographic growth. It is calibrated over the period 2006–2010 using monthly catch and effort data from the French Guiana's coastal fishery, involving thirteen species and four fleets. Using projections at the horizon 2040, different management strategies and scenarios are compared from a viability viewpoint, thus accounting for biodiversity preservation, fleet profitability and food security. The analysis shows that under certain conditions, viable options can be identified which allow fishing intensity and production to be increased to respond to food security requirements but with minimum impacts on the marine resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Public agencies are increasingly required to collaborate with each other in order to provide high-quality e-government services. This collaboration is usually based on the service-oriented approach and supported by interoperability platforms. Such platforms are specialized middleware-based infrastructures enabling the provision, discovery and invocation of interoperable software services. In turn, given that personal data handled by governments are often very sensitive, most governments have developed some sort of legislation focusing on data protection. This paper proposes solutions for monitoring and enforcing data protection laws within an E-government Interoperability Platform. In particular, the proposal addresses requirements posed by the Uruguayan Data Protection Law and the Uruguayan E-government Platform, although it can also be applied in similar scenarios. The solutions are based on well-known integration mechanisms (e.g. Enterprise Service Bus) as well as recognized security standards (e.g. eXtensible Access Control Markup Language) and were completely prototyped leveraging the SwitchYard ESB product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Collecting and analyzing consumer data is essential in today’s data-driven business environment. However, consumers are becoming more aware of the value of the information they can provide to companies, thereby being more reluctant to share it for free. Therefore, companies need to find ways to motivate consumers to disclose personal information. The main research question of the study was formed as “How can companies motivate consumers to disclose personal information?” and it was further divided into two subquestions: 1) What types of benefits motivate consumers to disclose personal information? 2) How does the disclosure context affect the consumers’ information disclosure behavior? The conceptual framework consisted of a classification of extrinsic and intrinsic benefits, and moderating factors, which were recognized on the basis of prior research in the field. The study was conducted by using qualitative research methods. The primary data was collected by interviewing ten representatives from eight companies. The data was analyzed and reported according to predetermined themes. The findings of the study confirm that consumers can be motivated to disclose personal information by offering different types of extrinsic (monetary saving, time saving, self-enhancement, and social adjustment) and intrinsic (novelty, pleasure, and altruism) benefits. However, not all the benefits are equally useful ways to convince the customer to disclose information. Moreover, different factors in the disclosure context can either alleviate or increase the effectiveness of the benefits and the consumers’ motivation to disclose personal information. Such factors include the consumer’s privacy concerns, perceived trust towards the company, the relevancy of the requested information, personalization, website elements (especially security, usability, and aesthetics of a website), and the consumer’s shopping motivation. This study has several contributions. It is essential that companies recognize the most attractive benefits regarding their business and their customers, and that they understand how the disclosure context affects the consumer’s information disclosure behavior. The likelihood of information disclosure can be increased, for example, by offering benefits that meet the consumers’ needs and preferences, improving the relevancy of the asked information, stating the reasons for data collection, creating and maintaining a trustworthy image of the company, and enhancing the quality of the company’s website.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cette thèse examine l’interprétation et l’application, par l’Haute Cour d'Israël (HCJ), de principes du droit international de l’occupation et du droit international des droits de la personne dans le traitement de requêtes judiciaires formulées par des justiciables palestiniens. Elle s’intéresse plus particulièrement aux jugements rendus depuis le déclenchement de la deuxième Intifada (2000) suite à des requêtes mettant en cause la légalité des mesures adoptées par les autorités israéliennes au nom d’un besoin prétendu d’accroitre la sécurité des colonies et des colons israéliens dans le territoire occupé de la Cisjordanie. La première question sous étude concerne la mesure dans laquelle la Cour offre un recours effectif aux demandeurs palestiniens face aux violations alléguées de leurs droits internationaux par l’occupant. La recherche fait sienne la position de la HJC selon laquelle le droit de l’occupation est guidé par une logique interne tenant compte de la balance des intérêts en cause, en l’occurrence le besoin de sécurité de l’occupant, d’une part, et les droits fondamentaux de l’occupé, d’autre part. Elle considère, en outre, que cette logique se voit reflétée dans les principes normatifs constituant la base de ce corpus juridique, soit que l’occupation est par sa nature temporaire, que de l’occupation découle un rapport de fiduciaire et, finalement, que l’occupant n’acquiert point de souveraineté sur le territoire. Ainsi, la deuxième question qui est posée est de savoir si l’interprétation du droit par la Cour (HCJ) a eu pour effet de promouvoir ces principes normatifs ou, au contraire, de leur porter préjudice. La réunion de plusieurs facteurs, à savoir la durée prolongée de l’occupation de la Cisjordanie par Israël, la menace accrue à la sécurité depuis 2000 ainsi qu’une politique de colonisation israélienne active, soutenue par l’État, présentent un cas de figure unique pour vérifier l’hypothèse selon laquelle les tribunaux nationaux des États démocratiques, généralement, et ceux jouant le rôle de la plus haute instance judiciaire d’une puissance occupante, spécifiquement, parviennent à assurer la protection des droits et libertés fondamentaux et de la primauté du droit au niveau international. Le premier chapitre présente une étude, à la lumière du premier principe normatif énoncé ci-haut, des jugements rendus par la HCJ dans les dossiers contestant la légalité de la construction du mur à l’intérieur de la Cisjordanie et de la zone dite fermée (Seam Zone), ainsi que des zones de sécurité spéciales entourant les colonies. Le deuxième chapitre analyse, cette fois à la lumière du deuxième principe normatif, des jugements dans les dossiers mettant en cause des restrictions sur les déplacements imposées aux Palestiniens dans le but allégué de protéger la sécurité des colonies et/ou des colons. Le troisième chapitre jette un regard sur les jugements rendus dans les dossiers mettant en cause la légalité du tracé du mur à l’intérieur et sur le pourtour du territoire annexé de Jérusalem-Est. Les conclusions découlant de cette recherche se fondent sur des données tirées d’entrevues menées auprès d’avocats israéliens qui s’adressent régulièrement à la HCJ pour le compte de justiciables palestiniens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Faculdade de Direito, Programa de Pós-Graduação em Direito, 2016.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With wireless vehicular communications, Vehicular Ad Hoc Networks (VANETs) enable numerous applications to enhance traffic safety, traffic efficiency, and driving experience. However, VANETs also impose severe security and privacy challenges which need to be thoroughly investigated. In this dissertation, we enhance the security, privacy, and applications of VANETs, by 1) designing application-driven security and privacy solutions for VANETs, and 2) designing appealing VANET applications with proper security and privacy assurance. First, the security and privacy challenges of VANETs with most application significance are identified and thoroughly investigated. With both theoretical novelty and realistic considerations, these security and privacy schemes are especially appealing to VANETs. Specifically, multi-hop communications in VANETs suffer from packet dropping, packet tampering, and communication failures which have not been satisfyingly tackled in literature. Thus, a lightweight reliable and faithful data packet relaying framework (LEAPER) is proposed to ensure reliable and trustworthy multi-hop communications by enhancing the cooperation of neighboring nodes. Message verification, including both content and signature verification, generally is computation-extensive and incurs severe scalability issues to each node. The resource-aware message verification (RAMV) scheme is proposed to ensure resource-aware, secure, and application-friendly message verification in VANETs. On the other hand, to make VANETs acceptable to the privacy-sensitive users, the identity and location privacy of each node should be properly protected. To this end, a joint privacy and reputation assurance (JPRA) scheme is proposed to synergistically support privacy protection and reputation management by reconciling their inherent conflicting requirements. Besides, the privacy implications of short-time certificates are thoroughly investigated in a short-time certificates-based privacy protection (STCP2) scheme, to make privacy protection in VANETs feasible with short-time certificates. Secondly, three novel solutions, namely VANET-based ambient ad dissemination (VAAD), general-purpose automatic survey (GPAS), and VehicleView, are proposed to support the appealing value-added applications based on VANETs. These solutions all follow practical application models, and an incentive-centered architecture is proposed for each solution to balance the conflicting requirements of the involved entities. Besides, the critical security and privacy challenges of these applications are investigated and addressed with novel solutions. Thus, with proper security and privacy assurance, these solutions show great application significance and economic potentials to VANETs. Thus, by enhancing the security, privacy, and applications of VANETs, this dissertation fills the gap between the existing theoretic research and the realistic implementation of VANETs, facilitating the realistic deployment of VANETs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, security of industrial control systems has been the main research focus due to the potential cyber-attacks that can impact the physical operations. As a result of these risks, there has been an urgent need to establish a stronger security protection against these threats. Conventional firewalls with stateful rules can be implemented in the critical cyberinfrastructure environment which might require constant updates. Despite the ongoing effort to maintain the rules, the protection mechanism does not restrict malicious data flows and it poses the greater risk of potential intrusion occurrence. The contributions of this thesis are motivated by the aforementioned issues which include a systematic investigation of attack-related scenarios within a substation network in a reliable sense. The proposed work is two-fold: (i) system architecture evaluation and (ii) construction of attack tree for a substation network. Cyber-system reliability remains one of the important factors in determining the system bottleneck for investment planning and maintenance. It determines the longevity of the system operational period with or without any disruption. First, a complete enumeration of existing implementation is exhaustively identified with existing communication architectures (bidirectional) and new ones with strictly unidirectional. A detailed modeling of the extended 10 system architectures has been evaluated. Next, attack tree modeling for potential substation threats is formulated. This quantifies the potential risks for possible attack scenarios within a network or from the external networks. The analytical models proposed in this thesis can serve as a fundamental development that can be further researched.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.