786 resultados para Data mining models
Resumo:
Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Dissertation presented at the Faculty of Sciences and Technology of the New University of Lisbon to obtain the degree of Doctor in Electrical Engineering, specialty of Robotics and Integrated Manufacturing
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
A vigilância de efeitos indesejáveis após a vacinação é complexa. Existem vários actores de confundimento que podem dar origem a associações espúrias, meramente temporais mas que podem provocar uma percepção do risco alterada e uma consequente desconfiança generalizada acerca do uso das vacinas. Com efeito as vacinas são medicamentos complexos com características únicas cuja vigilância necessita de abordagens metodológicas desenvolvidas para esse propósito. Do exposto se entende que, desde o desenvolvimento da farmacovigilância se tem procurado desenvolver novas metodologias que sejam concomitantes aos Sistemas de Notificação Espontânea que já existem. Neste trabalho propusemo-nos a desenvolver e testar um modelo de vigilância de reacções adversas a vacinas, baseado na auto-declaração pelo utente de eventos ocorridos após a vacinação e testar a capacidade de gerar sinais aplicando cálculos de desproporção a datamining. Para esse efeito foi constituída uma coorte não controlada de utentes vacinados em Centros de Saúde que foram seguidos durante quinze dias. A recolha de eventos adversos a vacinas foi efectuada pelos próprios utentes através de um diário de registo. Os dados recolhidos foram objecto de análise descritiva e análise de data-mining utilizando os cálculos Proportional Reporting Ratio e o Information Component. A metodologia utilizada permitiu gerar um corpo de evidência suficiente para a geração de sinais. Tendo sido gerados quatro sinais. No âmbito do data-mining a utilização do Information Component como método de geração de sinais parece aumentar a eficiência científica ao permitir reduzir o número de ocorrências até detecção de sinal. A informação reportada pelos utentes parece válida como indicador de sinais de reacções adversas não graves, o que permitiu o registo de eventos sem incluir o viés da avaliação da relação causal pelo notificador. Os principais eventos reportados foram eventos adversos locais (62,7%) e febre (31,4%).------------------------------------------ABSTRACT: The monitoring of undesirable effects following vaccination is complex. There are several confounding factors that can lead to merely temporal but spurious associations that can cause a change in the risk perception and a consequent generalized distrust about the safe use of vaccines. Indeed, vaccines are complex drugs with unique characteristics so that its monitoring requires specifically designed methodological approaches. From the above-cited it is understandable that since the development of Pharmacovigilance there has been a drive for the development of new methodologies that are concomitant with Spontaneous Reporting Systems already in place. We proposed to develop and test a new model for vaccine adverse reaction monitoring, based on self-report by users of events following vaccination and to test its capability to generate disproportionality signals applying quantitative methods of signal generation to data-mining. For that effect we set up an uncontrolled cohort of users vaccinated in Healthcare Centers,with a follow-up period of fifteen days. Adverse vaccine events we registered by the users themselves in a paper diary The data was analyzed using descriptive statistics and two quantitative methods of signal generation: Proportional Reporting Ratio and Information Component. themselves in a paper diary The data was analyzed using descriptive statistics and two quantitative methods of signal generation: Proportional Reporting Ratio and Information Component. The methodology we used allowed for the generation of a sufficient body of evidence for signal generation. Four signals were generated. Regarding the data-mining, the use of Information Component as a method for generating disproportionality signals seems to increase scientific efficiency by reducing the number of events needed to signal detection. The information reported by users seems valid as an indicator of non serious adverse vaccine reactions, allowing for the registry of events without the bias of the evaluation of the casual relation by the reporter. The main adverse events reported were injection site reactions (62,7%) and fever (31,4%).
Resumo:
OBJECTIVE: To evaluate the predictive value of genetic polymorphisms in the context of BCG immunotherapy outcome and create a predictive profile that may allow discriminating the risk of recurrence. MATERIAL AND METHODS: In a dataset of 204 patients treated with BCG, we evaluate 42 genetic polymorphisms in 38 genes involved in the BCG mechanism of action, using Sequenom MassARRAY technology. Stepwise multivariate Cox Regression was used for data mining. RESULTS: In agreement with previous studies we observed that gender, age, tumor multiplicity and treatment scheme were associated with BCG failure. Using stepwise multivariate Cox Regression analysis we propose the first predictive profile of BCG immunotherapy outcome and a risk score based on polymorphisms in immune system molecules (SNPs in TNFA-1031T/C (rs1799964), IL2RA rs2104286 T/C, IL17A-197G/A (rs2275913), IL17RA-809A/G (rs4819554), IL18R1 rs3771171 T/C, ICAM1 K469E (rs5498), FASL-844T/C (rs763110) and TRAILR1-397T/G (rs79037040) in association with clinicopathological variables. This risk score allows the categorization of patients into risk groups: patients within the Low Risk group have a 90% chance of successful treatment, whereas patients in the High Risk group present 75% chance of recurrence after BCG treatment. CONCLUSION: We have established the first predictive score of BCG immunotherapy outcome combining clinicopathological characteristics and a panel of genetic polymorphisms. Further studies using an independent cohort are warranted. Moreover, the inclusion of other biomarkers may help to improve the proposed model.
Resumo:
Mestrado em Engenharia Informática, Área de Especialização em Tecnologias do Conhecimento e da Decisão
Resumo:
Dissertação apresentada como requisito parcial para a obtenção do grau de mestre em Estatística e Gestão de Informação.
Resumo:
This paper presents the characterization of high voltage (HV) electric power consumers based on a data clustering approach. The typical load profiles (TLP) are obtained selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The choice of the best partition is supported using several cluster validity indices. The proposed data-mining (DM) based methodology, that includes all steps presented in the process of knowledge discovery in databases (KDD), presents an automatic data treatment application in order to preprocess the initial database in an automatic way, allowing time saving and better accuracy during this phase. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ consumption behavior. To validate our approach, a case study with a real database of 185 HV consumers was used.
Resumo:
This paper presents several forecasting methodologies based on the application of Artificial Neural Networks (ANN) and Support Vector Machines (SVM), directed to the prediction of the solar radiance intensity. The methodologies differ from each other by using different information in the training of the methods, i.e, different environmental complementary fields such as the wind speed, temperature, and humidity. Additionally, different ways of considering the data series information have been considered. Sensitivity testing has been performed on all methodologies in order to achieve the best parameterizations for the proposed approaches. Results show that the SVM approach using the exponential Radial Basis Function (eRBF) is capable of achieving the best forecasting results, and in half execution time of the ANN based approaches.
Resumo:
A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Information Systems.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
A utilização de juntas adesivas em aplicações industriais tem vindo a aumentar, em detrimento dos métodos tradicionais tais como a soldadura, brasagem e ligações aparafusadas e rebitadas. Este facto deve-se às vantagens que estas oferecem, como o facto de serem mais leves, comportarem-se bem sob cargas cíclicas ou de fadiga, a ligação de materiais diferentes e menores concentrações de tensões. Para aumentar a confiança no projeto de estruturas adesivas, é importante conseguir prever com precisão a sua resistência mecânica e respetivas propriedades de fratura (taxa crítica de libertação de energia de deformação à tração, GIC, e corte, GIIC). Estas propriedades estão diretamente relacionadas com a Mecânica da Fratura e são estimadas através de uma análise energética. Para este efeito, distinguem-se três tipos de modelos: modelos que necessitam da medição do comprimento de fenda durante a propagação do dano, modelos que utilizam um comprimento de fenda equivalente e métodos baseados no integral J. Como na maioria dos casos as solicitações ocorrem em modo misto (combinação de tração com corte), é de grande importância a perceção da fratura nesta condições, nomeadamente das taxas de libertação de energia relativamente a diferentes critérios ou envelopes de fratura. Esta comparação permite, por exemplo, averiguar qual o melhor critério energético de rotura a utilizar em modelos numéricos baseados em Modelos de Dano Coesivo. Neste trabalho é realizado um estudo experimental utilizando o ensaio Single-Leg Bending (SLB) em provetes colados com três tipos de adesivos, de forma a estudar e comparar as suas propriedades de fratura. Para tal, são aplicados alguns modelos de redução da taxa de libertação de energia de deformação à tração, GI, e corte, GII, enquadrados nos modelos que necessitam da medição do comprimento de fenda e nos modelos que utilizam um comprimento de fenda equivalente. Numa fase posterior, procedeu-se à análise e comparação dos resultados adquiridos durante a fase experimental de GI e GII de cada adesivo. A discussão de resultados foi também feita através da análise dos valores obtidos em diversos envelopes de fratura, no sentido de averiguar qual o critério de rotura mais adequado a considerar para cada adesivo. Foi obtida uma concordância bastante boa entre métodos de determinação de GI e GII, com exceção do adesivo mais dúctil, para o qual o método baseado no comprimento de fenda equivalente apresentou resultados ligeiramente superiores.
Resumo:
Quality of life is a concept influenced by social, economic, psychological, spiritual or medical state factors. More specifically, the perceived quality of an individual's daily life is an assessment of their well-being or lack of it. In this context, information technologies may help on the management of services for healthcare of chronic patients such as estimating the patient quality of life and helping the medical staff to take appropriate measures to increase each patient quality of life. This paper describes a Quality of Life estimation system developed using information technologies and the application of data mining algorithms to access the information of clinical data of patients with cancer from Otorhinolaryngology and Head and Neck services of an oncology institution. The system was evaluated with a sample composed of 3013 patients. The results achieved show that there are variables that may be significant predictors for the Quality of Life of the patient: years of smoking (p value 0.049) and size of the tumor (p value < 0.001). In order to assign the variables to the classification of the quality of life the best accuracy was obtained by applying the John Platt's sequential minimal optimization algorithm for training a support vector classifier. In conclusion data mining techniques allow having access to patients additional information helping the physicians to be able to know the quality of life and produce a well-informed clinical decision.
Resumo:
O sector do turismo é uma área francamente em crescimento em Portugal e que tem desenvolvido a sua divulgação e estratégia de marketing. Contudo, apenas se prende com indicadores de desempenho e de oferta instalada (número de quartos, hotéis, voos, estadias), deixando os indicadores estatísticos em segundo plano. De acordo com o “ Travel & tourism Competitiveness Report 2013”, do World Economic Forum, classifica Portugal em 72º lugar no que respeita à qualidade e cobertura da informação estatística, disponível para o sector do Turismo. Refira-se que Espanha ocupa o 3º lugar. Uma estratégia de mercado, sem base analítica, que sustente um quadro de orientações específico e objetivo, com relevante conhecimento dos mercados alvo, dificilmente é compreensível ou até mesmo materializável. A implementação de uma estrutura de Business Intelligence que permita a realização de um levantamento e tratamento de dados que possibilite relacionar e sustentar os resultados obtidos no sector do turismo revela-se fundamental e crucial, para que sejam criadas estratégias de mercado. Essas estratégias são realizadas a partir da informação dos turistas que nos visitam, e dos potenciais turistas, para que possam ser cativados no futuro. A análise das características e dos padrões comportamentais dos turistas permite definir perfis distintos e assim detetar as tendências de mercado, de forma a promover a oferta dos produtos e serviços mais adequados. O conhecimento obtido permite, por um lado criar e disponibilizar os produtos mais atrativos para oferecer aos turistas e por outro informá-los, de uma forma direcionada, da existência desses produtos. Assim, a associação de uma recomendação personalizada que, com base no conhecimento de perfis do turista proceda ao aconselhamento dos melhores produtos, revela-se como uma ferramenta essencial na captação e expansão de mercado.
Resumo:
A tese desenvolvida tem como foco fornecer os meios necessários para extrair conhecimento contidos no histórico académico da instituição transformando a informação em algo simples e de fácil leitura para qualquer utilizador. Com o progresso da sociedade, as escolas recebem milhares de alunos todos os anos que terão de ser orientados e monitorizados pelos dirigentes das instituições académicas de forma a garantir programas eficientes e adequados para o progresso educacional de todos os alunos. Atribuir a um docente a responsabilidade de actuar segundo o historial académico dos seus alunos não é plausível uma vez que um aluno consegue produzir milhares de registos para análise. O paradigma de mineração de dados na educação surge com a necessidade de otimizar os recursos disponíveis expondo conclusões que não se encontram visiveis sem uma análise acentuada e cuidada. Este paradigma expõe de forma clara e sucinta os dados estatísticos analisados por computador oferecendo a possibilidade de melhorar as lacunas na qualidade de ensino das instituições. Esta dissertação detalha o desenvolvimento de uma ferramente de inteligência de negócio capaz de, através de mineração de dados, analisar e apresentar conclusões pertinentes de forma legível ao utilizador.