968 resultados para DIAMETER DISTRIBUTION
Resumo:
Aim: To describe the recruitment, ophthalmic examination methods and distribution of ocular biometry of participants in the Norfolk Island Eye Study, who were individuals descended from the English Bounty mutineers and their Polynesian wives. Methods: All 1,275 permanent residents of Norfolk Island aged over 15 years were invited to participate, including 602 individuals involved in a 2001 cardiovascular disease study. Participants completed a detailed questionnaire and underwent a comprehensive eye assessment including stereo disc and retinal photography, ocular coherence topography and conjunctival autofluorescence assessment. Additionally, blood or saliva was taken for DNA testing. Results: 781 participants aged over 15 years were seen (54% female), comprising 61% of the permanent Island population. 343 people (43.9%) could trace their family history to the Pitcairn Islanders (Norfolk Island Pitcairn Pedigree). Mean anterior chamber depth was 3.32mm, mean axial length (AL) was 23.5mm, and mean central corneal thickness was 546 microns. There were no statistically significant differences in these characteristics between persons with and without Pitcairn Island ancestry. Mean intra-ocular pressure was lower in people with Pitcairn Island ancestry: 15.89mmHg compared to those without Pitcairn Island ancestry 16.49mmHg (P = .007). The mean keratometry value was lower in people with Pitcairn Island ancestry (43.22 vs. 43.52, P = .007). The corneas were flatter in people of Pitcairn ancestry but there was no corresponding difference in AL or refraction. Conclusion: Our study population is highly representative of the permanent population of Norfolk Island. Ocular biometry was similar to that of other white populations. Heritability estimates, linkage analysis and genome-wide studies will further elucidate the genetic determinants of chronic ocular diseases in this genetic isolate.
Resumo:
Results of an interlaboratory comparison on size characterization of SiO2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—“Properties of Nanoparticle Populations” of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 “Techniques for characterizing size distribution of airborne nanoparticles”. Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2–46.6 nm and 80.2–89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO2 nanoparticles characterization are proposed.
Resumo:
In this report, a detailed FTIR fitting analysis was used to recognize Mg, Zn and Al homogeneous distribution in MgxZnyAl(x+y)/2-Layered double hydroxide (LDH) hydroxyl layer. In detail, OH-Mg2Al:OH-Mg3 ratios decreased from 95.2:4.8 (MIR) and 94.2:5.8 (NIR) to 58.9:41.1 (MIR) and 61.8:38.2 (NIR), when Mg:Al increased from 2.2:1.0 to 4.1:1.0 in MgAl-LDHs. These fitting results were similar with theoretical calculations of 94.3:5.7 and 59.0:41.0. In a further analysis of MgxZnyAl(x+y)/2-LDHs, OH bonded Zn2Mg, Zn2Al, MgZnAl, Mg2Al and Mg2Zn peaks were identified at 3420, 3430, 3445–3450, 3454 and 3545 cm-1, respectively. With the decrease of Mg:Zn from 3:1 to 1:3, metal-hydroxyl bands changed from OH-Mg2Al and MgZnAl (with a ratio of 49.4:50.6) to OH-MgZnAl and Zn2Al (with a ratio of 55.0:45.0). They were also similar with theoretical calculations of 47.6:52.4 and 54.6:45.4. As a result, these results show that there is an ordered cation distribution in MgxZnyAl(x+y)/2-LDH, and FTIR is feasible in recognizing this structure.
Resumo:
During food drying, many other changes occur simultaneously, resulting in an improved overall quality. Among the quality attributes, the structure and its corresponding color influence directly or indirectly other properties of food. In addition, these quality attributes are affected by process conditions, material components and the raw structure of the foodstuff. In this work, the temperature distribution within food materials during microwave drying has been taken into consideration to observe its role in color modification. In order to determine the temperature distribution of microwave-dried food (apple), a thermal imaging camera has been used. The image acquired from the digital camera has been analysed using image J software in order to get the color change of fresh and dried apple. The results show that temperature distribution plays an important role in determining the quality of the food. The thermal imaging camera was deployed to observe the temperature distribution within food materials during drying. It is clearly observed from the higher value of (ERGB =102) and the uneven color change that uneven temperature distribution can influence customer perceptions of the quality of dried food. Simulation of a mathematical model of temperature distribution during microwave drying can make it possible to predict the colour and texture of the microwaved food.
Resumo:
This paper introduces a parallel implementation of an agent-based model applied to electricity distribution grids. A fine-grained shared memory parallel implementation is presented, detailing the way the agents are grouped and executed on a multi-threaded machine, as well as the way the model is built (in a composable manner) which is an aid to the parallelisation. Current results show a medium level speedup of 2.6, but improvements are expected by incor-porating newer distributed or parallel ABM schedulers into this implementa-tion. While domain-specific, this parallel algorithm can be applied to similarly structured ABMs (directed acyclic graphs).
Resumo:
Our results demonstrate that photorefractive residual amplitude modulation (RAM) noise in electro-optic modulators (EOMs) can be reduced by modifying the incident beam intensity distribution. Here we report an order of magnitude reduction in RAM when beams with uniform intensity (flat-top) profiles, generated with an LCOS-SLM, are used instead of the usual fundamental Gaussian mode (TEM00). RAM arises from the photorefractive amplified scatter noise off the defects and impurities within the crystal. A reduction in RAM is observed with increasing intensity uniformity (flatness), which is attributed to a reduction in space charge field on the beam axis. The level of RAM reduction that can be achieved is physically limited by clipping at EOM apertures, with the observed results agreeing well with a simple model. These results are particularly important in applications where the reduction of residual amplitude modulation to 10^-6 is essential.
Resumo:
Quantity and timing of protein ingestion are major factors regulating myofibrillar protein synthesis (MPS). However, the effect of specific ingestion patterns on MPS throughout a 12 h period is unknown. We determined how different distributions of protein feeding during 12 h recovery after resistance exercise affects anabolic responses in skeletal muscle. Twenty-four healthy trained males were assigned to three groups (n = 8/group) and undertook a bout of resistance exercise followed by ingestion of 80 g of whey protein throughout 12 h recovery in one of the following protocols: 8 × 10 g every 1.5 h (PULSE); 4 × 20 g every 3 h (intermediate: INT); or 2 × 40 g every 6 h (BOLUS). Muscle biopsies were obtained at rest and after 1, 4, 6, 7 and 12 h post exercise. Resting and post-exercise MPS (l-[ring-(13)C6] phenylalanine), and muscle mRNA abundance and cell signalling were assessed. All ingestion protocols increased MPS above rest throughout 1-12 h recovery (88-148%, P < 0.02), but INT elicited greater MPS than PULSE and BOLUS (31-48%, P < 0.02). In general signalling showed a BOLUS>INT>PULSE hierarchy in magnitude of phosphorylation. MuRF-1 and SLC38A2 mRNA were differentially expressed with BOLUS. In conclusion, 20 g of whey protein consumed every 3 h was superior to either PULSE or BOLUS feeding patterns for stimulating MPS throughout the day. This study provides novel information on the effect of modulating the distribution of protein intake on anabolic responses in skeletal muscle and has the potential to maximize outcomes of resistance training for attaining peak muscle mass.
Resumo:
The prime objective of drying is to enhance shelf life of perishable food materials. As the process is very energy intensive in nature, researchers are trying to minimise energy consumption in the drying process. In order to determine the exact amount of energy needed for drying a food product, understanding the physics of moisture distribution and bond strength of water within the food material is essential. In order understand the critical moisture content, moisture distribution and water bond strength in food material, Thermogravimetric analysis (TGA) can be properly utilised. This work has been conducted to investigate moisture distribution and water bond strength in selected food materials; apple, banana and potato. It was found that moisture distribution and water bond strength influence moisture migration from the food materials. In addition, proportion of different types of water (bound, free, surface water) has been simply identified using TGA. This study provides a better understanding of water contents and its role in drying rate and energy consumption.
Resumo:
Purpose to evaluate the effects of the wearer’s pupil size and spherical aberration on visual performance with centre-near, aspheric multifocal contact lenses (MFCLs). The advantage of binocular over monocular vision was also investigated. Methods Twelve young volunteers, with an average age of 27±5 years, participated in the study. LogMAR Visual Acuity (VA) was measured under cycloplegia for a range of defocus levels (from +3.0 to -3.0D, in 0.5D steps) with no correction and with three aspheric MFCLs (Air Optix Aqua Multifocal, Ciba Vision, Duluth, GA, US) with a centre-near design, providing correction for “Low”, “Med” and “High” near demands. Measurements were performed for all combinations of the following conditions: i) artificial pupils of 6mm and 3mm diameter, ii) binocular and monocular (dominant eye) vision. Depth-of-focus (DOF) was calculated from the VA vs. defocus curves. Ocular aberrations under cycloplegia were measured using iTrace. Results VA at -3.0D defocus (simulating near performance) was statistically higher for the 3mm than for the 6mm pupil (p=0.006), and for binocular rather than for monocular vision (p<0.001). Similarly, DOF was better for the 3mm pupil (p=0.002) and for binocular viewing conditions (p<0.001, ANOVA). Both VA at –3.0D defocus and DOF increased as the “addition” of the MFCL correction increased. Finally, with the centre-near MFCLs a linear correlation was found between VA at –3.0D defocus and the wearer’s ocular spherical aberration (R2=0.20 p<0.001 for 6mm data), with the eyes exhibiting the higher positive spherical aberration experiencing lower VAs. By contrast, no correlation was found between VA and spherical aberration at 0.00D defocus (distance vision). Conclusions Both near VA and depth-of-focus improve with these MFCLs, with the effects being more pronounced for small pupils and binocular than for monocular vision. Coupling of the wearer’s ocular spherical aberration with the aberration profiles provided by MFCLs affects their functionality.
Resumo:
This thesis documented pathogenic species of nontuberculous mycobacteria in the Brisbane water distribution system. When water and shower aerosol strains were compared with human strains of mycobacteria, the study found that the likelihood of acquiring infection from municipal water was specific for four main species. The method for isolation of mycobacteria from water was refined, followed by sampling from 220 sites across Brisbane. A variety of species (incl 15 pathogens) were identified and genotypically compared to human strains. For M. abscessus and M. lentiflavum, water strains clustered with human strains. Pathogenic strains of M. kansasii were found, though non-pathogenic strains dominated. Waterborne strains of M. fortuitum differed to human strains. Extensive home sampling of 20 patients with NTM disease, supported the theory that the risk of acquiring NTM from water or shower aerosols appears species specific for M. avium, M. kansasii, M. lentiflavum and M. abscessus.
Resumo:
Abstract BACKGROUND: An examination of melanoma incidence according to anatomical region may be one method of monitoring the impact of public health initiatives. OBJECTIVES: To examine melanoma incidence trends by body site, sex and age at diagnosis or body site and morphology in a population at high risk. MATERIALS AND METHODS: Population-based data on invasive melanoma cases (n = 51473) diagnosed between 1982 and 2008 were extracted from the Queensland Cancer Registry. Age-standardized incidence rates were calculated using the direct method (2000 world standard population) and joinpoint regression models were used to fit trend lines. RESULTS: Significantly decreasing trends for melanomas on the trunk and upper limbs/shoulders were observed during recent years for both sexes under the age of 40 years and among males aged 40-59years. However, in the 60 and over age group, the incidence of melanoma is continuing to increase at all sites (apart from the trunk) for males and on the scalp/neck and upper limbs/shoulders for females. Rates of nodular melanoma are currently decreasing on the trunk and lower limbs. In contrast, superficial spreading melanoma is significantly increasing on the scalp/neck and lower limbs, along with substantial increases in lentigo maligna melanoma since the late 1990s at all sites apart from the lower limbs. CONCLUSIONS: In this large study we have observed significant decreases in rates of invasive melanoma in the younger age groups on less frequently exposed body sites. These results may provide some indirect evidence of the impact of long-running primary prevention campaigns.
Resumo:
Price based technique is one way to handle increase in peak demand and deal with voltage violations in residential distribution systems. This paper proposes an improved real time pricing scheme for residential customers with demand response option. Smart meters and in-home display units are used to broadcast the price and appropriate load adjustment signals. Customers are given an opportunity to respond to the signals and adjust the loads. This scheme helps distribution companies to deal with overloading problems and voltage issues in a more efficient way. Also, variations in wholesale electricity prices are passed on to electricity customers to take collective measure to reduce network peak demand. It is ensured that both customers and utility are benefitted by this scheme.
Resumo:
Articular cartilage is the load-bearing tissue that consists of proteoglycan macromolecules entrapped between collagen fibrils in a three-dimensional architecture. To date, the drudgery of searching for mathematical models to represent the biomechanics of such a system continues without providing a fitting description of its functional response to load at micro-scale level. We believe that the major complication arose when cartilage was first envisaged as a multiphasic model with distinguishable components and that quantifying those and searching for the laws that govern their interaction is inadequate. To the thesis of this paper, cartilage as a bulk is as much continuum as is the response of its components to the external stimuli. For this reason, we framed the fundamental question as to what would be the mechano-structural functionality of such a system in the total absence of one of its key constituents-proteoglycans. To answer this, hydrated normal and proteoglycan depleted samples were tested under confined compression while finite element models were reproduced, for the first time, based on the structural microarchitecture of the cross-sectional profile of the matrices. These micro-porous in silico models served as virtual transducers to produce an internal noninvasive probing mechanism beyond experimental capabilities to render the matrices micromechanics and several others properties like permeability, orientation etc. The results demonstrated that load transfer was closely related to the microarchitecture of the hyperelastic models that represent solid skeleton stress and fluid response based on the state of the collagen network with and without the swollen proteoglycans. In other words, the stress gradient during deformation was a function of the structural pattern of the network and acted in concert with the position-dependent compositional state of the matrix. This reveals that the interaction between indistinguishable components in real cartilage is superimposed by its microarchitectural state which directly influences macromechanical behavior.
Resumo:
Integration of small-scale electricity generators, known as Distributed Generation (DG), into the distribution networks has become increasingly popular at the present. This tendency together with the falling price of synchronous-type generator has potential to give the DG a better chance in participating in the voltage regulation process together with other devices already available in the system. The voltage control issue turns out to be a very challenging problem for the distribution engineers since existing control coordination schemes would need to be reconsidered to take into account the DG operation. In this paper, we propose a control coordination technique, which is able to utilize the ability of the DG as a voltage regulator, and at the same time minimizes interaction with other active devices, such as On-load Tap Changing Transformer (OLTC) and voltage regulator. The technique has been developed based on the concept of control zone, Line Drop Compensation (LDC), as well as the choice of controller's parameters. Simulations carried out on an Australian system show that the technique is suitable and flexible for any system with multiple regulating devices including DG.
Resumo:
The reliable operation of distribution systems is critically dependent on detailed understanding of load impacts on distribution transformer insulation systems. This paper estimates the impact of rooftop photovoltaic (PV) generation on a typical 200-kVA, 22/0.415-kV distribution transformer life under different operating conditions. This transformer supplies a suburban area with a high penetration of roof top photovoltaic systems. The transformer loads and the phase distribution of the PV systems are significantly unbalanced. Oil and hot-spot temperature and remnant life of distribution transformer under different PV and balance scenarios are calculated. It is shown that PV can significantly extend the transformer life.