945 resultados para Cu-based fcc solid solution
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Nanoparticles of octakis[3-(3-amino-1,2,4-triazole)propyl]octasilsesquioxane (ATZ-SSQ) were tested as ligands, for transition-metal ions in aqueous solution with a special attention to sorption isotherms, ligand-metal interaction, and determination of metal ions in natural waters. The adsorption potential of the material ATZ-SSQ was compared with related [3(3-amino-1,2,4-triazole)propyl]silica gel (ATZ-SG). The adsorption was performed using a batchwise process and both organofunctionalized surfaces showed the ability to adsorb the metal ions from aqueous solution. The Langmuir model was used to simulate the sorption isotherms. The results suggest that the sorption of these metals on ATZ-SSQ and ATZ-SG occurs mainly by surface complexation. The equilibrium condition is reached at time lower than 3 min for ATZ-SSQ, while for ATZ-SG is only reached at time of 25 min. The maximum metal ion uptake values for ATZ-SSQ were higher than the corresponding values achieved with the ATZ-SG. In order to obtain more information on the ligand-metal interaction of the complexes on the surface of the ATZ-SSQ nanomaterial, ESR study with various degrees of copper loadings was carried out. The ATZ-SSQ was tested for the determination (in flow using a column technique) of the metal ions present in natural waters. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica (SiAt-SPCPE) was applied to Ni2+ determination in commercial ethanol fuel samples. The proposed method comprised four steps: (1) Ni2+ preconcentration at open circuit potential directly in the ethanol fuel sample, (2) transference of the electrode to an electrochemical cell containing DMG, (3) differential pulse voltammogram registering and (4) surface regeneration by polishing the electrode. The proposed method combines the high Ni2+ adsorption capacity presented by 2-aminothiazole organofunctionalized silica with the electrochemical properties of the Ni(DMG)2 complex, whose electrochemical reduction provides the analytical signal.All experimental parameters involved in the proposed method were optimized. Using a preconcentration time of 20 min, it was obtained a linear range from 7.5 x 10(-9) to 1.0 x 10(-6) mol L-1 with detection limit of 2.0 x 10(-9) mol L-1. Recovery values between 96.5 and 102.4% were obtained for commercial samples spiked with 1.0 mu mol L-1 Ni2+ and the developed electrode was totally stable in ethanolic solutions. The contents of Ni2+ found in the commercial samples using the proposed method were compared to those obtained by graphite furnace atomic absorption spectroscopy by using the F- and t-test. Neither the F- nor t-values exceeded the critical values at 95% confidence level, confirming that there are not statistical differences between the results obtained by both methods. These results indicate that the developed electrode can be successfully employed to reliable Ni2+ determination in commercial ethanol fuel samples without any sample pretreatment or dilution step. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper describes an interactive environment built entirely upon public domain or free software, intended to be used as the preprocessor of a finite element package for the simulation of three-dimensional electromagnetic problems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The new complex [Cu(NCS)(2)(pn)] (1) (pn = 1,3-propanediamine) has been synthesized and characterized by elemental analysis, infrared and electronic spectroscopy. Single crystal X-ray diffraction studies revealed that complex 1 is made up of neutral [Cu(NCS)(2)(pn)] units which are connected by mu-1,3,3-thiocyanato groups to yield a 2D metal-organic framework with a brick-wall network topology. Intermolecular hydrogen bonds of the type NH...SCN and NH...NCS are also responsible for the stabilization of the crystal structure. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The effect of addition of different amounts of acetylacetone (acacH) on the species formed at room temperature and after thermohydrolysis at 70 degreesC for 30 and 120 min of ethanolic SnCl4.5H(2)O solutions is followed by EXAFS spectroscopy at the Sn K-edge. We show that thermohydrolyzed solutions are a mixture of SnO2 nanoparticles and soluble tin polynuclear species. The complexation of the tin molecular precursors by acetylacetonate ligands is evidenced by H-1, C-13, and Sn-119 NMR spectroscopy and EXAFS for a acacH/Sn ratio higher than 2. Single crystals are isolated from solution and the structure, determined by X-ray diffraction, is built up from monomeric Cl-3(H2O)Sn(acac)-H2O units bridged together by hydrogen bonding. The acacH/Sn ratio in solution controls the polycondensation of the hydrolyzed species but not the crystallite size of the SnO2 nanoparticles (similar to2 nm). Because of the major presence of chelated tin mono- and dimeric complexes in solution for acacH/Sn > 2, the condensation is almost inhibited, meanwhile the decrease of amount of chelated complexes for the acacH/Sn < 2 gives rise to an increase of the number of nanoparticles.
Resumo:
The reactions of the pseudohalide-bridged dimer [Pd(N,C-dmba)(mu -SCN)](2) (1) (dmba = N,N-dimethylbenzylamine) with cis-Ph2PCH=CHPPh2 (cis-dppet) (1:1 molar ratio) and of [Pd(N,C-dmba)(mu -NCO)](2) (2) with Ph2PCH2CH2PPh2 (dppe) (1:2 molar ratio) gave mononuclear [Pd(C-dmba)(SCN)(cis-dppet)].H2O (1a) and [Pd(C-dmba)(NCO)(dppe)] (2a), respectively, with the diphosphines acting as chelating ligands. Reaction of (2) with Fe(C5H4PPh2)(2) (dppf) (1:1 molar ratio) yielded [{Pd(N,C-dmba)(NCO)}(2)(mu -dppf)] (2b), a bimetallic species containing two palladium atoms bridged by the diphosphine, whereas reaction in a 1:2 molar ratio gave the mononuclear [Pd(N,C-dmba)(dppf)][NCO]. CH2Cl2 (2c), with the diphosphine acting as a chelating ligand. The compounds have been characterized by elemental analysis, i.r., P-31{H-1}, C-13- and H-1-n.m.r. spectroscopies. Conductivity measurements together with spectroscopic data showed that (1a) and (2a) do not have the same structure in the solid state and in MeCl solution, whereas for compounds (2b) and (2c) no structural changes were observed when the solids were dissolved in MeCl.
Resumo:
Thermal decomposition kinetics of solid rocket propellants based on hydroxyl-terminated polybutadiene-HTPB binder was studied by applying the Arrhenius and Flynn-Wall-Ozawa's methods. The thermal decomposition data of the propellant samples were analyzed by thermogravimetric analysis (TG/DTG) at different heating rates in the temperature range of 300-1200 K. TG curves showed that the thermal degradation occurred in three main stages regardless of the plasticizer (DOA) raw material, the partial HTPB/IPDI binder and the total ammonium perchlorate decompositions. The kinetic parameters E-a (activation energy) and A (pre-exponential factor) and the compensation parameter (S-p) were determined. The apparent activation energies obtained from different methods showed a very good agreement.
Resumo:
This paper presents a new algorithm for optimal power flow problem. The algorithm is based on Newton's method which it works with an Augmented Lagrangian function associated with the original problem. The function aggregates all the equality and inequality constraints and is solved using the modified-Newton method. The test results have shown the effectiveness of the approach using the IEEE 30 and 638 bus systems.
Resumo:
A comparative study is reported between C-18 bonded silica gel and powdered polyethylene (PE) as sorbent for Cd, Cu, and Pb determination using ammonium diethyldithiophosphate (ADTP) as the complexing agent in a flow injection system. The complexes were formed in 0.14 mol L-1 HNO3 and processed in a simple flow system comprising a peristaltic pump, a manual injector-commutator, and a sorbent-packed minicolumn. Ethanol was selected as the eluent and analytes in the eluate were determined by flame atomic absorption spectrometry. The optimum concentration of the complexing agent was 0.1% (m/v) ADTP for Cu and Pb determination using either C-18 or PE, and 0.25% (m/v) ADTP for Cd determination using PE. The sample loading flow rates were 5.0, 3.6, and 3.0 mL min(-1) for Cu, Pb, and Cd, respectively. The best elution flow rate was 6.5 mL min(-1). For a 60-sec preconcentration time, the sampling rate was 40 h(-1) and the enrichment factors of 33, 36, and 11 times (C-18) or 18, 22, and 23 times (PE) were obtained for Cu, Pb, and Cd, respectively. The limits of detection (LOD) were 1.6 mug L-1 Cu, 11 mug L-1 Pb, and 2.0 mug L-1 Cd using C-18 or 2.9 mug L-1 Cu, 19 mug L-1 Pb, and 1.0 mug L-1 Cd using PE, respectively. The relative standard deviations (n = 12) were typically <2%, <2%, and <6% for Cd, Cu, and Pb, respectively. The recoveries of Cd, Cu, and Pb added to wine samples varied from 96-99%, 97-102%, and 90-99%, respectively, using C-18 or PE. Accuracy was checked for Cd, Cu, and Pb determination in six wine samples digested by block digestor and open-vessel microwave-assisted digestion systems. The results revealed that C-18 was more efficient for Cu and Pb determination, while PE was the best sorbent for Cd.
Resumo:
Throughout the world, biomonitoring has become the standard for assessing exposure of individuals to toxic elements as well as for responding to serious environmental public health problems. However, extensive biomonitoring surveys require rapid and simple analytical methods. Thus, a simple and high-throughput method is proposed for the determination of arsenic (As), cadmium (Cd), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and selenium (Se) in blood samples by using inductively coupled plasma-mass spectrometry (ICP-MS). Prior to analysis, 200 l of blood samples was mixed with 500 l of 10% v/v tetramethylammonium hydroxide (TMAH) solution, incubated for 10 min, and subsequently diluted to 10 ml with a solution containing 0.05% w/v ethylenediamine tetraacetic acid (EDTA) + 0.005% v/v Triton X-100. After that, samples were directly analyzed by ICP-MS (ELAN DRC II). Rhodium was selected as an internal standard with matrix-matching calibration. Method detection limits were 0.08, 0.04, 0.5, 0.09, 0.12, 0.04, and 0.1 g//L for As, Cd, Cu, Mn, Ni, Pb, and Se, respectively. Validation data are provided based on the analysis of blood samples from the trace elements inter-\comparison program operated by the Institut National de Sante Publique du Quebec, Canada. Additional validation was provided by the analysis of human blood samples by the proposed method and by using electrothermal atomic absorption spectrometry (ETAAS). The method was subsequently applied for the estimation of background metal blood values in the Brazilian population. In general, the mean concentrations of As, Cd, Cu, Mn, Ni, Pb, and Se in blood were 1.1, 0.4, 890, 9.6, 2.1, 65.4, and 89.3 g/L, respectively, and are in agreement with other global populations. Influences of age, gender, smoking habits, alcohol consumption, and geographical variation on the values were also considered. Smoking habits influenced the levels of Cd in blood. The levels of Cu, Mn, and Pb were significantly correlated with gender, whereas Cu and Pb were significantly correlated with age. There were also interesting differences in Mn and Se levels in the population living in the north of Brazil compared to the south.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)