879 resultados para Controller medications
Resumo:
Increased crash risk is associated with sedative medications and researchers and health-professionals have called for improvements to medication warnings about driving. The tiered warning system in France since 2005 indicates risk level, uses a color-coded pictogram, and advises the user to seek the advice of a doctor before driving. In Queensland, Australia, the mandatory warning on medications that may cause drowsiness advises the user not to drive or operate machinery if they self-assess that they are affected, and calls attention to possible increased impairment when combined with alcohol. Objectives The reported aims of the study were to establish and compare risk perceptions associated with the Queensland and French warnings among medication users. It was conducted to complement the work of DRUID in reviewing the effectiveness of existing campaigns and practice guidelines. Methods Medication users in France and Queensland were surveyed using warnings about driving from both contexts to compare risk perceptions associated with each label. Both samples were assessed for perceptions of the warning that carried the strongest message of risk. The Queensland study also included perceptions of the likelihood of crash and level of impairment associated with the warning. Results Findings from the French study (N = 75) indicate that when all labels were compared, the majority of respondents perceived the French Level-3 label as the strongest warning about risk concerning driving. Respondents in Queensland had significantly stronger perceptions of potential impairment to driving ability, z = -13.26, p <.000 (n = 325), and potential chance of having a crash, z = -11.87, p < .000 (n = 322), after taking a medication that displayed the strongest French warning, compared with the strongest Queensland warning. Conclusions Evidence suggests that warnings about driving displayed on medications can influence risk perceptions associated with use of medication. Further analyses will determine whether risk perceptions influence compliance with the warnings.
Resumo:
Research is indicating that individuals who present for DUI treatment may have competing substance abuse and mental health needs. This study aimed to examine the extent of such comorbidity issues among a sample of Texas DUI offenders. Method: Records of 36,372 DUI clients and 308,695 non-DUI clients admitted to Texas treatment programs between 2005 and 2008 were obtained from the State's administrative dataset. The data were analysed to identify the relationship between substance use, psychiatric problems, program completion and recidivism rates. Results: Analysis indicated that while non-DUI clients were more likely to present with more severe illicit substance use problems, DUI clients were more likely to have a primary problem with alcohol. Additionally, a cannabis use problem was also found to be significantly associated with DUI recidivism in the last year. In regards to mental health needs, a major finding was that depression was the most common psychiatric condition reported by DUI clients, including those with more than one DUI offence in the past year. This group were also more at risk of being diagnosed with Bipolar Disorder compared to the general population, and such a diagnosis was also associated with an increased likelihood of not completing treatment. Interestingly, female DUI and non-DUI clients were also more likely to be diagnosed with mental health problems compared to males, as well as more likely to be placed on medications at admission and have problems with methamphetamine, cocaine, and opiates. Conclusion: The findings highlight the complex competing needs of some DUI offenders who enter treatment. The results also suggest that there is a need to utilise mental health and substance abuse screening methods to ensure DUI offenders are directed towards appropriate treatment pathways as well as ensure that such interventions adequately cater for complex substance abuse and psychiatric needs.
Resumo:
Ocean processes are dynamic and complex events that occur on multiple different spatial and temporal scales. To obtain a synoptic view of such events, ocean scientists focus on the collection of long-term time series data sets. Generally, these time series measurements are continually provided in real or near-real time by fixed sensors, e.g., buoys and moorings. In recent years, an increase in the utilization of mobile sensor platforms, e.g., Autonomous Underwater Vehicles, has been seen to enable dynamic acquisition of time series data sets. However, these mobile assets are not utilized to their full capabilities, generally only performing repeated transects or user-defined patrolling loops. Here, we provide an extension to repeated patrolling of a designated area. Our algorithms provide the ability to adapt a standard mission to increase information gain in areas of greater scientific interest. By implementing a velocity control optimization along the predefined path, we are able to increase or decrease spatiotemporal sampling resolution to satisfy the sampling requirements necessary to properly resolve an oceanic phenomenon. We present a path planning algorithm that defines a sampling path, which is optimized for repeatability. This is followed by the derivation of a velocity controller that defines how the vehicle traverses the given path. The application of these tools is motivated by an ongoing research effort to understand the oceanic region off the coast of Los Angeles, California. The computed paths are implemented with the computed velocities onto autonomous vehicles for data collection during sea trials. Results from this data collection are presented and compared for analysis of the proposed technique.
Resumo:
Antipsychotic medications act as either antagonists or partial agonists of the dopamine D2 receptor (DRD2) and antipsychotic drugs vary widely in their binding affinity for the D2 receptor (Kapur and Seeman, 2000). The DRD2 957CNT (rs6277) polymorphism has previously been associated with schizophrenia (Lawford et al., 2005) and the T-allele of the 957CNT polymorphism is associated with reduced mRNA stability and synthesis of the dopamine D2 receptor (Duan et al., 2003). The aim of the study was to determine if the rs6277 polymorphism predicts some of the variability of positive and negative symptoms observed in schizophrenia patients being treated with antipsychotic medication.
Resumo:
In February 2010, the Delhi High Court delivered its decision in Bayer Corp v Union of India in which Bayer had appealed against an August 2009 decision of the same court. Both decisions prevented Bayer from introducing the concept of patent linkage into India’s drug regulatory regime. Bayer appealed to the Indian Supreme Court, the highest court in India, which agreed on 2 March 2010 to hear the appeal. Given that India is regarded as a global pharmaceutical manufacturer of generic medications, how its judiciary and government perceive their international obligations has a significant impact on the global access to medicines regime. In rejecting the application of patent linkage, the case provides an opportunity for India to further acknowledge its international human rights obligations.
Resumo:
A trend in design and implementation of modern industrial automation systems is to integrate computing, communication and control into a unified framework at different levels of machine/factory operations and information processing. These distributed control systems are referred to as networked control systems (NCSs). They are composed of sensors, actuators, and controllers interconnected over communication networks. As most of communication networks are not designed for NCS applications, the communication requirements of NCSs may be not satisfied. For example, traditional control systems require the data to be accurate, timely and lossless. However, because of random transmission delays and packet losses, the control performance of a control system may be badly deteriorated, and the control system rendered unstable. The main challenge of NCS design is to both maintain and improve stable control performance of an NCS. To achieve this, communication and control methodologies have to be designed. In recent decades, Ethernet and 802.11 networks have been introduced in control networks and have even replaced traditional fieldbus productions in some real-time control applications, because of their high bandwidth and good interoperability. As Ethernet and 802.11 networks are not designed for distributed control applications, two aspects of NCS research need to be addressed to make these communication networks suitable for control systems in industrial environments. From the perspective of networking, communication protocols need to be designed to satisfy communication requirements for NCSs such as real-time communication and high-precision clock consistency requirements. From the perspective of control, methods to compensate for network-induced delays and packet losses are important for NCS design. To make Ethernet-based and 802.11 networks suitable for distributed control applications, this thesis develops a high-precision relative clock synchronisation protocol and an analytical model for analysing the real-time performance of 802.11 networks, and designs a new predictive compensation method. Firstly, a hybrid NCS simulation environment based on the NS-2 simulator is designed and implemented. Secondly, a high-precision relative clock synchronization protocol is designed and implemented. Thirdly, transmission delays in 802.11 networks for soft-real-time control applications are modeled by use of a Markov chain model in which real-time Quality-of- Service parameters are analysed under a periodic traffic pattern. By using a Markov chain model, we can accurately model the tradeoff between real-time performance and throughput performance. Furthermore, a cross-layer optimisation scheme, featuring application-layer flow rate adaptation, is designed to achieve the tradeoff between certain real-time and throughput performance characteristics in a typical NCS scenario with wireless local area network. Fourthly, as a co-design approach for both a network and a controller, a new predictive compensation method for variable delay and packet loss in NCSs is designed, where simultaneous end-to-end delays and packet losses during packet transmissions from sensors to actuators is tackled. The effectiveness of the proposed predictive compensation approach is demonstrated using our hybrid NCS simulation environment.
Resumo:
A Wireless Sensor Network (WSN) is a set of sensors that are integrated with a physical environment. These sensors are small in size, and capable of sensing physical phenomena and processing them. They communicate in a multihop manner, due to a short radio range, to form an Ad Hoc network capable of reporting network activities to a data collection sink. Recent advances in WSNs have led to several new promising applications, including habitat monitoring, military target tracking, natural disaster relief, and health monitoring. The current version of sensor node, such as MICA2, uses a 16 bit, 8 MHz Texas Instruments MSP430 micro-controller with only 10 KB RAM, 128 KB program space, 512 KB external ash memory to store measurement data, and is powered by two AA batteries. Due to these unique specifications and a lack of tamper-resistant hardware, devising security protocols for WSNs is complex. Previous studies show that data transmission consumes much more energy than computation. Data aggregation can greatly help to reduce this consumption by eliminating redundant data. However, aggregators are under the threat of various types of attacks. Among them, node compromise is usually considered as one of the most challenging for the security of WSNs. In a node compromise attack, an adversary physically tampers with a node in order to extract the cryptographic secrets. This attack can be very harmful depending on the security architecture of the network. For example, when an aggregator node is compromised, it is easy for the adversary to change the aggregation result and inject false data into the WSN. The contributions of this thesis to the area of secure data aggregation are manifold. We firstly define the security for data aggregation in WSNs. In contrast with existing secure data aggregation definitions, the proposed definition covers the unique characteristics that WSNs have. Secondly, we analyze the relationship between security services and adversarial models considered in existing secure data aggregation in order to provide a general framework of required security services. Thirdly, we analyze existing cryptographic-based and reputationbased secure data aggregation schemes. This analysis covers security services provided by these schemes and their robustness against attacks. Fourthly, we propose a robust reputationbased secure data aggregation scheme for WSNs. This scheme minimizes the use of heavy cryptographic mechanisms. The security advantages provided by this scheme are realized by integrating aggregation functionalities with: (i) a reputation system, (ii) an estimation theory, and (iii) a change detection mechanism. We have shown that this addition helps defend against most of the security attacks discussed in this thesis, including the On-Off attack. Finally, we propose a secure key management scheme in order to distribute essential pairwise and group keys among the sensor nodes. The design idea of the proposed scheme is the combination between Lamport's reverse hash chain as well as the usual hash chain to provide both past and future key secrecy. The proposal avoids the delivery of the whole value of a new group key for group key update; instead only the half of the value is transmitted from the network manager to the sensor nodes. This way, the compromise of a pairwise key alone does not lead to the compromise of the group key. The new pairwise key in our scheme is determined by Diffie-Hellman based key agreement.
Resumo:
The synthesizer has come a long way since wendy Carlos' 'Switched On Bach'. Unfortunately many would not realise it. Synthesizers are in most of the popular and commercial music we hear, and their development has followed the rapid development of computing technology, allowing sugnificant perfromance leaps every five years. In the last 10 years or so, the physical interface of synthesizers has changed little even while the sound generating hardware has raced ahead. The stabilisation of gestural controller, particularly keyboard-based controllers, has enabled tje synthesizer to establish itself as an expressive instrument and one worthy of the hours of practice required on any instrument to reach a high level of proficiency. It is now time for the instrumental study of synthesizer to be taken seriously by music educators across Australia, and I hope, through this paper, to shed some light on the path forward.
Resumo:
The number of children with special health care needs surviving infancy and attending school has been increasing. Due to their health status, these children may be at risk of low social-emotional and learning competencies (e.g., Lightfoot, Mukherjee, & Sloper, 2000; Zehnder, Landolt, Prchal, & Vollrath, 2006). Early social problems have been linked to low levels of academic achievement (Ladd, 2005), inappropriate behaviours at school (Shiu, 2001) and strained teacher-child relationships (Blumberg, Carle, O‘Connor, Moore, & Lippmann, 2008). Early learning difficulties have been associated with mental health problems (Maughan, Rowe, Loeber, & Stouthamer-Loeber, 2003), increased behaviour issues (Arnold, 1997), delinquency (Loeber & Dishion, 1983) and later academic failure (Epstein, 2008). Considering the importance of these areas, the limited research on special health care needs in social-emotional and learning domains is a factor driving this research. The purpose of the current research is to investigate social-emotional and learning competence in the early years for Australian children who have special health care needs. The data which informed this thesis was from Growing up in Australia: The Longitudinal Study of Australian Children. This is a national, longitudinal study being conducted by the Commonwealth Department of Families, Housing, Community Services and Indigenous Affairs. The study has a national representative sample, with data collection occurring biennially, in 2004 (Wave 1), 2006 (Wave 2) and 2008 (Wave 3). Growing up in Australia uses a cross-sequential research design involving two cohorts, an Infant Cohort (0-1 at recruitment) and a Kindergarten Cohort (4-5 at recruitment). This study uses the Kindergarten Cohort, for which there were 4,983 children at recruitment. Three studies were conducted to address the objectives of this thesis. Study 1 used Wave 1 data to identify and describe Australian children with special health care needs. Children who identified as having special health care needs through the special health care needs screener were selected. From this, descriptive analyses were run. The results indicate that boys, children with low birth weight and children from families with low levels of maternal education are likely to be in the population of children with special health care needs. Further, these children are likely to be using prescription medications, have poor general health and are likely to have specific condition diagnoses. Study 2 used Wave 1 data to examine differences between children with special health care needs and their peers in social-emotional competence and learning competence prior to school. Children identified by the special health care needs screener were chosen for the case group (n = 650). A matched case control group of peers (n = 650), matched on sex, cultural and linguistic diversity, family socioeconomic position and age, were the comparison group. Social-emotional competence was measured through Social/Emotional Domain scores taken from the Growing up in Australia Outcome Index, with learning competence measured through Learning Domain scores. Results suggest statistically significant differences in scores between the two groups. Children with special health care needs have lower levels of social-emotional and learning competence prior to school compared to their peers. Study 3 used Wave 1 and Wave 2 data to examine the relationship between special health care needs at Wave 1 and social-emotional competence and learning competence at Wave 2, as children started school. The sample for this study consisted of children in the Kindergarten Cohort who had teacher data at Wave 2. Results from multiple regression models indicate that special health care needs prior to school (Wave 1) significantly predicts social-emotional competence and learning competence in the early years of school (Wave 2). These results indicate that having special health care needs prior to school is a risk factor for the social-emotional and learning domains in the early years of school. The results from these studies give valuable insight into Australian children with special health care needs and their social-emotional and learning competence in the early years. The Australia population of children with special health care needs were primarily male children, from families with low maternal education, were likely to be of poor health and taking prescription medications. It was found that children with special health care needs were likely to have lower social-emotional competence and learning competence prior to school compared to their peers. Results indicate that special health care needs prior to school were predictive of lower social-emotional and learning competencies in the early years of school. More research is required into this unique population and their competencies over time. However, the current research provides valuable insight into an under researched 'at risk' population.
Resumo:
Mock circulation loops (MCLs) are used to evaluate cardiovascular devices prior to in-vivo trials; however they lack the vital autoregulatory responses that occur in humans. This study aimed to develop and implement a left and right ventricular Frank-Starling response in a MCL. A proportional controller based on ventricular end diastolic volume was used to control the driving pressure of the MCL’s pneumatically operated ventricles. Ventricular pressure-volume loops and end systolic pressure-volume relationships were produced for a variety of healthy and pathological conditions and compared with human data to validate the simulated Frank-Starling response. The non-linear Frank-Starling response produced in this study successfully altered left and right ventricular contractility with changing preload and was validated with previously reported data. This improvement to an already detailed MCL has resulted in a test rig capable of further refining cardiovascular devices and reducing the number of in-vivo trials.
Resumo:
This paper establishes a practical stability result for discrete-time output feedback control involving mismatch between the exact system to be stabilised and the approximating system used to design the controller. The practical stability is in the sense of an asymptotic bound on the amount of error bias introduced by the model approximation, and is established using local consistency properties of the systems. Importantly, the practical stability established here does not require the approximating system to be of the same model type as the exact system. Examples are presented to illustrate the nature of our practical stability result.
Resumo:
Alcohol use disorders (AUDs) are complex and developing effective treatments will require the combination of novel medications and cognitive behavioral therapy approaches. Epidemiological studies have shown there is a high correlation between alcohol consumption and tobacco use, and the prevalence of smoking in alcoholics is as high as 80% compared to about 30% for the general population. Both preclinical and clinical data provide evidence that nicotine administration increases alcohol intake and nonspecific nicotinic receptor antagonists reduce alcohol-mediated behaviors. As nicotine interacts specifically with the neuronal nicotinic acetylcholine receptor (nAChR) system, this suggests that nAChRs play an important role in the behavioral effects of alcohol. In this review, we discuss the importance of nAChRs for the treatment of AUDs and argue that the use of FDA approved nAChR ligands, such as varenicline and mecamylamine, approved as smoking cessation aids may prove to be valuable treatments for AUDs. We also address the importance of combining effective medications with behavioral therapy for the treatment of alcohol dependent individuals.
Resumo:
Background: The aims of this study were to determine the documentation of pharmacotherapy optimization goals in the discharge letters of patients with the principal diagnosis of chronic heart failure. Methods: A retrospective practice audit of 212 patients discharged to the care of their local general practitioner from general medical units of a large tertiary hospital. Details of recommendations regarding ongoing pharmacological and non-pharmacological management were reviewed. The doses of medications on discharge were noted and whether they met current guidelines recommending titration of angiotensin-converting enzyme inhibitors and beta-blockers. Ongoing arrangements for specialist follow up were also reviewed. Results: The mean age of patients whose letters were reviewed was 78.4 years (standard deviation ± 8.6); 50% were men. Patients had an overall median of six comorbidities and eight regular medications on discharge. Mean length of stay for each admission was 6 days. Discharge letters were posted a median of 4 days after discharge, with 25% not posted at 10 days. No discharge letter was sent in 9.4% (20) of the cases. Only six (2.8%) letters had any recommendations regarding future titration of angiotensin-converting enzyme inhibitors and 6.6% (14) for beta-blockers. Recommendations for future non-pharmacological management, for example, diuretic action plans, regular weight monitoring and exercise plans were not found in the letters in this audit. Conclusion: Hospital discharge is an opportunity to communicate management plans for treatment optimization effectively, and while this opportunity is spurned, implementation gaps in the management of cardiac failure will probably remain.
Resumo:
Gesture in performance is widely acknowledged in the literature as an important element in making a performance expressive and meaningful. The body has been shown to play an important role in the production and perception of vocal performance in particular. This paper is interested in the role of gesture in creative works that seek to extend vocal performance via technology. A creative work for vocal performer, laptop computer and a Human Computer Interface called the eMic (Extended Microphone Stand Interface controller) is presented as a case study, to explore the relationships between movement, voice production, and musical expression. The eMic is an interface for live vocal performance that allows the singers’ gestures and interactions with a sensor based microphone stand to be captured and mapped to musical parameters. The creative work discussed in this paper presents a new compositional approach for the eMic by working with movement as a starting point for the composition and thus using choreographed gesture as the basis for musical structures. By foregrounding the body and movement in the creative process, the aim is to create a more visually engaging performance where the performer is able to more effectively use the body to express their musical objectives.
Resumo:
Approximately 20 years have passed now since the NTSB issued its original recommendation to expedite development, certification and production of low-cost proximity warning and conflict detection systems for general aviation [1]. While some systems are in place (TCAS [2]), ¡¨see-and-avoid¡¨ remains the primary means of separation between light aircrafts sharing the national airspace. The requirement for a collision avoidance or sense-and-avoid capability onboard unmanned aircraft has been identified by leading government, industry and regulatory bodies as one of the most significant challenges facing the routine operation of unmanned aerial systems (UAS) in the national airspace system (NAS) [3, 4]. In this thesis, we propose and develop a novel image-based collision avoidance system to detect and avoid an upcoming conflict scenario (with an intruder) without first estimating or filtering range. The proposed collision avoidance system (CAS) uses relative bearing ƒÛ and angular-area subtended ƒê , estimated from an image, to form a test statistic AS C . This test statistic is used in a thresholding technique to decide if a conflict scenario is imminent. If deemed necessary, the system will command the aircraft to perform a manoeuvre based on ƒÛ and constrained by the CAS sensor field-of-view. Through the use of a simulation environment where the UAS is mathematically modelled and a flight controller developed, we show that using Monte Carlo simulations a probability of a Mid Air Collision (MAC) MAC RR or a Near Mid Air Collision (NMAC) RiskRatio can be estimated. We also show the performance gain this system has over a simplified version (bearings-only ƒÛ ). This performance gain is demonstrated in the form of a standard operating characteristic curve. Finally, it is shown that the proposed CAS performs at a level comparable to current manned aviations equivalent level of safety (ELOS) expectations for Class E airspace. In some cases, the CAS may be oversensitive in manoeuvring the owncraft when not necessary, but this constitutes a more conservative and therefore safer, flying procedures in most instances.