987 resultados para Contrast-enhanced
Resumo:
BACKGROUND & AIMS: The peroxisome proliferator-activated nuclear receptors (PPAR-alpha, PPAR-beta, and PPAR-gamma), which modulate the expression of genes involved in energy homeostasis, cell cycle, and immune function, may play a role in hepatic stellate cell activation. Previous studies focused on the decreased expression of PPAR-gamma in hepatic stellate cell activation but did not investigate the expression and role of the PPAR-alpha and -beta isotypes. The aim of this study was to evaluate the expression of the different PPARs during hepatic stellate cell activation in vitro and in situ and to analyze possible factors that might contribute to their expression. In a second part of the study, the effect of a PPAR-beta agonist on acute liver injury was evaluated. METHODS: The effects of PPAR isotype-specific ligands on hepatic stellate cell transition were evaluated by bromodeoxyuridine incorporation, gel shifts, immunoprecipitation, and use of antisense PPAR-beta RNA-expressing adenoviruses. Tumor necrosis factor alpha-induced PPAR-beta phosphorylation and expression was evaluated by metabolic labeling and by using specific P38 inhibitors. RESULTS: Hepatic stellate cells constitutively express high levels of PPAR-beta, which become further induced during culture activation and in vivo fibrogenesis. No significant expression of PPAR-alpha or -gamma was found. Stimulation of the P38 mitogen-activated protein kinase pathway modulated the expression of PPAR-beta. Transcriptional activation of PPAR-beta by L165041 enhanced hepatic stellate cell proliferation. Treatment of rats with a single bolus of CCl(4) in combination with L165041 further enhanced the expression of fibrotic markers. CONCLUSIONS: PPAR-beta is an important signal-transducing factor contributing to hepatic stellate cell proliferation during acute and chronic liver inflammation.
Resumo:
Stable carbon, oxygen, and strontium isotope records were obtained from uppermost Hauterivian to lowermost Aptian belemnite rostra, which were collected in well-dated sections from the Vocontian Trough (southeastern France). This data set complements previously published belemnite-isotope records from the uppermost Berriasian-Hauterivian interval from the same basin. The belemnite carbon and oxygen isotope record is compared to the carbonate bulk-rock isotope record from the same sections, and from additional Italian sections. With regards to their long-term trends, both belemnite and whole-rock delta O-18 records are well correlated, except for the uppermost Hauterivian-lower Barremian interval, within which they deviate. This discrepancy is interpreted to be linked to the latest Hauterivian Faraoni oceanic anoxic event and its early Barremian aftermath. The Faraoni level is characterized by enhanced sea-water stratification, probably induced by the onset of a warmer and more humid climate along the northern Tethyan margin. The early Barremian was characterized by stronger vertical sea-water mixing reflected by a decrease in density contrast between sea-surface and deeper waters. The belemnite oxygen isotope record shows a more stable evolution with smaller fluctuations than its bulk-rock counterpart, which indicates that deeper water masses were not as much subjected to density fluctuations as sea-surface water. The comparison of belemnite and bulk-rock carbon isotope records allows observing the impact of regional influence exerted by platform carbonate ooze shedding on the carbon cycle. Discrepancies in the two records are observed during time of photozoan carbonate platform growth. The strontium isotopic record shows a gradual increase from the uppermost Berriasian to the uppermost lower Barremian followed by a rapid decrease until the uppermost Barremian and a renewed small increase within the lowermost Aptian. The major inflection point in the uppermost lower Barremian appears to predate the onset in the formation of the Ontong-Java volcanic plateau.
Resumo:
In this study, hypothalamic activation was performed by dehydration-induced anorexia (DIA) and overnight food suppression (OFS) in female rats. The assessment of the hypothalamic response to these challenges by manganese-enhanced MRI showed increased neuronal activity in the paraventricular nuclei (PVN) and lateral hypothalamus (LH), both known to be areas involved in the regulation of food intake. The effects of DIA and OFS were compared by generating T-score maps. Increased neuronal activation was detected in the PVN and LH of DIA rats relative to OFS rats. In addition, the neurochemical profile of the PVN and LH were measured by (1) H MRS at 14.1T. Significant increases in metabolite levels were measured in DIA and OFS relative to control rats. Statistically significant increases in γ-aminobutyric acid were found in DIA (p=0.0007) and OFS (p<0.001) relative to control rats. Lactate increased significantly in DIA (p=0.03), but not in OFS, rats. This work shows that manganese-enhanced MRI coupled to (1) H MRS at high field is a promising noninvasive method for the investigation of the neural pathways and mechanisms involved in the control of food intake, in the autonomic and endocrine control of energy metabolism and in the regulation of body weight.
Resumo:
Our objective was a prospective comparison of MR enteroclysis (MRE) with multidetector spiral-CT enteroclysis (MSCTE). Fifty patients with various suspected small bowel diseases were investigated by MSCTE and MRE. The MSCTE was performed using slices of 2.5 mm, immediately followed by MRE, obtaining T1- and T2-weighted sequences, including gadolinium-enhanced acquisition with fat saturation. Three radiologists independently evaluated MSCTE and MRE searching for 12 pathological signs. Interobserver agreement was calculated. Sensitivities and specificities resulted from comparison with pathological results ( n=29) and patient's clinical evolution ( n=21). Most pathological signs, such as bowel wall thickening (BWT), bowel wall enhancement (BWE) and lymphadenopathy (ADP), showed better interobserver agreement on MSCTE than on MRE (BWT: 0.65 vs 0.48; BWE: 0.51 vs 0.37; ADP: 0.52 vs 0.15). Sensitivity of MSCTE was higher than that of MRE in detecting BWT (88.9 vs 60%), BWE (78.6 vs 55.5%) and ADP (63.8 vs 14.3%). Wilcoxon signed-rank test revealed significantly better sensitivity of MSCTE than that of MRE for each observer ( p=0.028, p=0.046, p=0.028, respectively). Taking the given study design into account, MSCTE provides better sensitivity in detecting lesions of the small bowel than MRE, with higher interobserver agreement.
Resumo:
PROPÒSIT: Estudiar l'efecte de la cirurgia LASIK en la llum dispersa i la sensibilitat al contrast. MÈTODES: Vint-i-vuit pacients van ser tractats amb LASIK. La qualitat visual es va avaluar abans de l'operació i dos mesos després. RESULTATS: La mitjana de llum dispersa i la sensibilitat al contrast abans de l'operació no va canviar en dos mesos després. Només un ull tenia un marcat augment en la llum dispersa. Nou ulls van presentar una lleugera disminució en la sensibilitat al contrast. S'han trobat dues complicacions. CONCLUSIÓ: Després de LASIK la majoria dels pacients (80%) no van tenir complicacions i van mantenir la seva qualitat visual. Uns pocs pacients (16%) van tenir una mica de qualitat visual disminuïda. Molt pocs (4%) van tenir complicacions clíniques amb disminució en la qualitat visual.
Resumo:
Adolescence, defined as a transition phase toward autonomy and independence, is a natural time of learning and adjustment, particularly in the setting of long-term goals and personal aspirations. It also is a period of heightened sensation seeking, including risk taking and reckless behaviors, which is a major cause of morbidity and mortality among teenagers. Recent observations suggest that a relative immaturity in frontal cortical neural systems may underlie the adolescent propensity for uninhibited risk taking and hazardous behaviors. However, converging preclinical and clinical studies do not support a simple model of frontal cortical immaturity, and there is substantial evidence that adolescents engage in dangerous activities, including drug abuse, despite knowing and understanding the risks involved. Therefore, a current consensus considers that much brain development during adolescence occurs in brain regions and systems that are critically involved in the perception and evaluation of risk and reward, leading to important changes in social and affective processing. Hence, rather than naive, immature and vulnerable, the adolescent brain, particularly the prefrontal cortex, should be considered as prewired for expecting novel experiences. In this perspective, thrill seeking may not represent a danger but rather a window of opportunities permitting the development of cognitive control through multiple experiences. However, if the maturation of brain systems implicated in self-regulation is contextually dependent, it is important to understand which experiences matter most. In particular, it is essential to unveil the underpinning mechanisms by which recurrent adverse episodes of stress or unrestricted access to drugs can shape the adolescent brain and potentially trigger life-long maladaptive responses.
Resumo:
We studied the feasibility of using halloysite clay nanotubes (HNTs) and carboxyl-functionalised multi-walled carbon nanotubes (COOH-MWCNTs) as antigen carriers to improve immune responses against a recombinant LipL32 protein (rLipL32). Immunisation using the HNTs or COOH-MWCNTs significantly increased the rLipL32-specific IgG antibody titres (p < 0.05) of Golden Syrian hamsters. None of the vaccines tested conferred protection against a challenge using a virulent Leptospira interrogans strain. These results demonstrated that nanotubes can be used as antigen carriers for delivery in hosts and the induction of a humoral immune response against purified leptospiral antigens used in subunit vaccine preparations.
Resumo:
One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy.
Resumo:
Rat 1 fibroblasts transfected to express either the wild-type hamster alpha 1B-adrenergic receptor or a constitutively active mutant (CAM) form of this receptor resulting from the alteration of amino acid residues 288-294 to encode the equivalent region of the human beta 2-adrenergic receptor were examined. The basal level of inositol phosphate generation in cells expressing the CAM alpha 1B-adrenergic receptor was greater than for the wild-type receptor, The addition of maximally effective concentrations of phenylephrine or noradrenaline resulted in substantially greater levels of inositol phosphate generation by the CAM alpha 1B-adrenergic receptor, although this receptor was expressed at lower steady-state levels than the wild-type receptor. The potency of both phenylephrine and noradrenaline to stimulate inositol phosphate production was approx. 200-fold greater at the CAM alpha 1B-adrenergic receptor than at the wild-type receptor. In contrast, endothelin 1, acting at the endogenously expressed endothelin ETA, receptor, displayed similar potency and maximal effects in the two cell lines. The sustained presence of phenylephrine resulted in down-regulation of the alpha subunits of the phosphoinositidase C-linked, pertussis toxin-insensitive, G-proteins G9 and G11 in cells expressing either the wild-type or the CAM alpha 1B-adrenergic receptor. The degree of down-regulation achieved was substantially greater in cells expressing the CAM alpha 1B-adrenergic receptor at all concentrations of the agonist. However, in this assay phenylephrine displayed only a slightly greater potency at the CAM alpha 1B-adrenergic receptor than at the wild-type receptor. There were no detectable differences in the basal rate of G9 alpha/G11 alpha degradation between cells expressing the wild-type or the CAMalpha 1B-adrenergic receptor. In both cell lines the addition of phenylephrine substantially increased the rate of degradation of these G-proteins, with a greater effect at the CAM alpha 1B-adrenergic receptor. The enhanced capacity of agonist both to stimulate second-messenger production at the CAM alpha 1B-adrenergic receptor and to regulate cellular levels of its associated G-proteins by stimulating their rate of degradation is indicative of an enhanced stoichiometry of coupling of this form of the receptor to G9 and G11.
Resumo:
ABSTRACTIn contrast to animals, plants cannot move from their place of birth and, therefore, need to adapt to their particular habitat in order to survive. Thus, plant development is remarkably plastic, making plants an ideal system for the isolation of genes that account for intraspecific natural variation and possibly environmental adaptation. However, to date, this approach mostly identified null alleles and missed mutations with subtle effects. For instance, BREVIS RADIX (BRX) has been isolated as a key regulator of root growth through a naturally occurring loss-of-function allele in the Arabidopsis thaliana accession Uk-1 and is the founding member of a highly-conserved plant-specific gene family.In this work, we show that a strong selective pressure is acting on the BRX gene family and dates back before the monocot-dicot divergence. However, functional diversification is observed mainly in dicotyledon BRX family genes and is correlated with acceleration in the evolutionary rates in the N-terminal regions. Population genetic data revealed that BRX is highly conserved across Arabidopsis accessions and presents signatures of adaptation. Interestingly, a seven amino acid deletion polymorphism in BRX sequence was found in a few accessions, which seems to be responsible for their enhanced primary root growth. Nevertheless, BRX might not only be active in the root, as suggested by its expression in the shoot. Indeed, leaves and cotyledons of brx mutants are significantly smaller than wild- type. This phenotype is a direct consequence of the absence of BRX function in the shoot rather than an indirect effect of an altered root system growth. Interestingly, cotyledons of brx plants reflect the same physiological defects as the root. Moreover, phenotypes in BRX gain-of-function plants, such as epinastic leaves and increased epidermal cell size, could be associated with an increase in leaf brassinosteroid content.Collectively, these results indicate that BRX contributes to local adaptation by ubiquitously regulating plant growth, probably through the modulation of brassinosteroid biosynthesis.RÉSUMÉContrairement à la plupart des animaux, les plantes ne peuvent se mouvoir et doivent ainsi s'adapter à leur environnement pour survivre. Pour cette raison, elles représentent un système idéal pour l'identification de gènes contribuant à la variation naturelle intra- spécifique, ainsi qu'à l'adaptation. Cependant, cette approche a, jusqu'à présent, surtout permis d'isoler des allèles nuls et non des mutations conférant des effets plus subtiles. C'est le cas du gène Β REVIS RADIX (BRX), un régulateur clé de la croissance racinaire, qui a été identifié grâce à un allèle non-fonctionnel présent dans l'accession naturelle d'Arabidopsis thaliana Uk-1. BRX et ses homologues des plantes mono- et dicotylédones forment une famille très conservée et spécifique aux plantes.Dans ce travail, nous démontrons que la famille de gènes BRX est soumise à une forte pression de sélection qui remonte avant la divergence entre mono- et dicotylédones. Cependant, une diversification fonctionnelle a été observée chez les gènes des dicotylédones et corrèle avec une accélération de la vitesse d'évolution dans leur région N- terminale. Une analyse génétique de différentes accessions naturelles d'Arabidopsis a révélé que BRX est hautement conservé et présente des signatures d'adaptation. Remarquablement, un polymorphisme de délétion de sept acides aminés a été détecté dans quelques accessions et a pour conséquence une plus forte croissance de la racine primaire. Néanmoins, il semble que le rôle de BRX ne se limite pas qu'à la racine, comme indiqué par son expression dans les parties aériennes de la plante. En effet, les mutants brx présentent des cotylédons et des feuilles significativement plus petits que le type sauvage, une conséquence directe de l'absence d'activité de BRX dans ces organes. Nous avons aussi noté que les cotylédons des mutants brx, à l'instar des racines, ont une perception altérée de l'auxine et peuvent être complémentés par l'application exogène de brassinostéroïdes. De plus, dans des plantes présentant un gain de fonction BRX, les feuilles sont épinastiques et les cellules de leur épiderme plus grandes. Ces phénotypes sont accompagnés d'une augmentation de la concentration de brassinostéroïdes dans les feuilles. Conjointement, ces résultats démontrent que BRX contribue à une adaptation locale de la plante par la régulation générale de sa croissance, probablement en modulant la biosynthèse des brassinostéroïdes.
Resumo:
OBJECTIVES: Acute respiratory distress syndrome is a common and highly lethal inflammatory lung syndrome. We previously have shown that an adenoviral vector expressing the heat shock protein (Hsp)70 (AdHSP) protects against experimental sepsis-induced acute respiratory distress syndrome in part by limiting neutrophil accumulation in the lung. Neutrophil accumulation and activation is modulated, in part, by the nuclear factor-kappaB (NF-kappaB) signal transduction pathway. NF-kappaB activation requires dissociation/degradation of a bound inhibitor, IkappaBalpha. IkappaBalpha degradation requires phosphorylation by IkappaB kinase, ubiquitination by the SCFbeta-TrCP (Skp1/Cullin1/Fbox beta-transducing repeat-containing protein) ubiquitin ligase, and degradation by the 26S proteasome. We tested the hypothesis that Hsp70 attenuates NF-kappaB activation at multiple points in the IkappaBalpha degradative pathway. DESIGN: Laboratory investigation. SETTING: University medical center research laboratory. SUBJECTS: Adolescent (200 g) Sprague-Dawley rats and murine lung epithelial-12 cells in culture. INTERVENTIONS: Lung injury was induced in rats via cecal ligation and double puncture. Thereafter, animals were treated with intratracheal injection of 1) phosphate buffer saline, 2) AdHSP, or 3) an adenovirus expressing green fluorescent protein. Murine lung epithelial-12 cells were stimulated with tumor necrosis factor-alpha and transfected. NF-kappaB was examined using molecular biological tools. MEASUREMENTS AND MAIN RESULTS: Intratracheal administration of AdHSP to rats with cecal ligation and double puncture limited nuclear translocation of NF-kappaB and attenuated phosphorylation of IkappaBalpha. AdHSP treatment reduced, but did not eliminate, phosphorylation of the beta-subunit of IkappaB kinase. In vitro kinase activity assays and gel filtration chromatography revealed that treatment of sepsis-induced lung injury with AdHSP induced fragmentation of the IkappaB kinase signalosome. This stabilized intermediary complexes containing IkappaB kinase components, IkappaBalpha, and NF-kappaB. Cellular studies indicate that although ubiquitination of IkappaBalpha was maintained, proteasomal degradation was impaired by an indirect mechanism. CONCLUSIONS: Treatment of sepsis-induced lung injury with AdHSP limits NF-kappaB activation. This results from stabilization of intermediary NF-kappaB/IkappaBalpha/IkappaB kinase complexes in a way that impairs proteasomal degradation of IkappaBalpha. This novel mechanism by which Hsp70 attenuates an intracellular process may be of therapeutic value.
Resumo:
BACKGROUND AND PURPOSE: A right-to-left shunt can be identified by contrast transcranial Doppler ultrasonography (c-TCD) at rest and/or after a Valsalva maneuver (VM) or by arterial blood gas (ABG) measurement. We assessed the influence of controlled strain pressures and durations during VM on the right-to-left passage of microbubbles, on which depends the shunt classification by c-TCD, and correlated it with the right-to-left shunt evaluation by ABG measurements in stroke patients with patent foramen ovale (PFO). METHODS: We evaluated 40 stroke patients with transesophageal echocardiography-documented PFO. The microbubbles were recorded with TCD at rest and after 4 different VM conditions with controlled duration and target strain pressures (duration in seconds and pressure in cm H2O, respectively): V5-20, V10-20, V5-40, and V10-40. The ABG analysis was performed after pure oxygen breathing in 34 patients, and the shunt was calculated as percentage of cardiac output. RESULTS: Among all VM conditions, V5-40 and V10-40 yielded the greatest median number of microbubbles (84 and 95, respectively; P<0.01). A significantly larger number of microbubbles were detected in V5-40 than in V5-20 (P<0.001) and in V10-40 than in V10-20 (P<0.01). ABG was not sensitive enough to detect a shunt in 31 patients. CONCLUSIONS: The increase of VM expiratory pressure magnifies the number of microbubbles irrespective of the strain duration. Because the right-to-left shunt classification in PFO is based on the number of microbubbles, a controlled VM pressure is advised for a reproducible shunt assessment. The ABG measurement is not sensitive enough for shunt assessment in stroke patients with PFO.
Resumo:
In this paper a novel rank estimation technique for trajectories motion segmentation within the Local Subspace Affinity (LSA) framework is presented. This technique, called Enhanced Model Selection (EMS), is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built by LSA. The results on synthetic and real data show that without any a priori knowledge, EMS automatically provides an accurate and robust rank estimation, improving the accuracy of the final motion segmentation
Resumo:
Although the attenuated Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccine has been used since 1921, tuberculosis (TB) control still proceeds at a slow pace. The main reason is the variable efficacy of BCG protection against TB among adults, which ranges from 0-80%. Subsequently, the mc2-CMX vaccine was developed with promising results. Nonetheless, this recombinant vaccine needs to be compared to the standard BCG vaccine. The objective of this study was to evaluate the immune response induced by mc2-CMX and compare it to the response generated by BCG. BALB/c mice were immunised with both vaccines and challenged withMycobacterium tuberculosis (Mtb). The immune and inflammatory responses were evaluated by ELISA, flow cytometry, and histopathology. Mice vaccinated with mc2-CMX and challenged with Mtb induced an increase in the IgG1 and IgG2 levels against CMX as well as recalled specific CD4+ T-cells that produced T-helper 1 cytokines in the lungs and spleen compared with BCG vaccinated and challenged mice. Both vaccines reduced the lung inflammatory pathology induced by the Mtb infection. The mc2-CMX vaccine induces a humoral and cellular response that is superior to BCG and is efficiently recalled after challenge with Mtb, although both vaccines induced similar inflammatory reductions.