978 resultados para Channel Estimation
Resumo:
The annual meeting of the French Ion Channels Society, held on the Mediterranean coast of France, is aimed at gathering the international scientific community working on various aspects of ion channels. In this report of the 19th edition of the meeting, held in September 2008, we summarize selected symposia on aspects of the ion channel field from fundamental to clinical research. The meeting is an opportunity for leading investigators as well as young researchers to present and discuss their recent advances and future challenges in the ion channel field.
Resumo:
study of channel catfish in the Mississippi River to determine differences in year class abundance and causative factors
Resumo:
BACKGROUND: Mutations in SCN4A may lead to myotonia. METHODS: Presentation of a large family with myotonia, including molecular studies and patch clamp experiments using human embryonic kidney 293 cells expressing wild-type and mutated channels. RESULTS: In a large family with historic data on seven generations and a clear phenotype, including myotonia at movement onset, with worsening by cold temperature, pregnancy, mental stress, and especially after rest after intense physical activity, but without weakness, the phenotype was linked with the muscle sodium channel gene (SCN4A) locus, in which a novel p.I141V mutation was found. This modification is located within the first transmembrane segment of domain I of the Na(v)1.4 alpha subunit, a region where no mutation has been reported so far. Patch clamp experiments revealed a mutation-induced hyperpolarizing shift (-12.9 mV) of the voltage dependence of activation, leading to a significant increase (approximately twofold) of the window current amplitude. In addition, the mutation shifted the voltage dependence of slow inactivation by -8.7 mV and accelerated the entry to this state. CONCLUSIONS: We propose that the gain-of-function alteration in activation leads to the observed myotonic phenotype, whereas the enhanced slow inactivation may prevent depolarization-induced paralysis.
Resumo:
The relief of the seafloor is an important source of data for many scientists. In this paper we present an optical system to deal with underwater 3D reconstruction. This system is formed by three cameras that take images synchronously in a constant frame rate scheme. We use the images taken by these cameras to compute dense 3D reconstructions. We use Bundle Adjustment to estimate the motion ofthe trinocular rig. Given the path followed by the system, we get a dense map of the observed scene by registering the different dense local reconstructions in a unique and bigger one
Resumo:
Every year, flash floods cause economic losses and major problems for undertaking daily activity in the Catalonia region (NE Spain). Sometimes catastrophic damage and casualties occur. When a long term analysis of floods is undertaken, a question arises regarding the changing role of the vulnerability and the hazard in risk evolution. This paper sets out to give some information to deal with this question, on the basis of analysis of all the floods that have occurred in Barcelona county (Catalonia) since the 14th century, as well as the flooded area, urban evolution, impacts and the weather conditions for any of most severe events. With this objective, the identification and classification of historical floods, and characterisation of flash-floods among these, have been undertaken. Besides this, the main meteorological factors associated with recent flash floods in this city and neighbouring regions are well-known. On the other hand, the identification of rainfall trends that could explain the historical evolution of flood hazard occurrence in this city has been analysed. Finally, identification of the influence of urban development on the vulnerability to floods has been carried out. Barcelona city has been selected thanks to its long continuous data series (daily rainfall data series, since 1854; one of the longest rainfall rate series of Europe, since 1921) and for the accurate historical archive information that is available (since the Roman Empire for the urban evolution). The evolution of flood occurrence shows the existence of oscillations in the earlier and later modern-age periods that can be attributed to climatic variability, evolution of the perception threshold and changes in vulnerability. A great increase of vulnerability can be assumed for the period 1850¿1900. The analysis of the time evolution for the Barcelona rainfall series (1854¿2000) shows that no trend exists, although, due to changes in urban planning, flash-floods impact has altered over this time. The number of catastrophic flash floods has diminished, although the extraordinary ones have increased.
Resumo:
Tripping is considered a major cause of fall in older people. Therefore, foot clearance (i.e., height of the foot above ground during swing phase) could be a key factor to better understand the complex relationship between gait and falls. This paper presents a new method to estimate clearance using a foot-worn and wireless inertial sensor system. The method relies on the computation of foot orientation and trajectory from sensors signal data fusion, combined with the temporal detection of toe-off and heel-strike events. Based on a kinematic model that automatically estimates sensor position relative to the foot, heel and toe trajectories are estimated. 2-D and 3-D models are presented with different solving approaches, and validated against an optical motion capture system on 12 healthy adults performing short walking trials at self-selected, slow, and fast speed. Parameters corresponding to local minimum and maximum of heel and toe clearance were extracted and showed accuracy ± precision of 4.1 ± 2.3 cm for maximal heel clearance and 1.3 ± 0.9 cm for minimal toe clearance compared to the reference. The system is lightweight, wireless, easy to wear and to use, and provide a new and useful tool for routine clinical assessment of gait outside a dedicated laboratory.
Resumo:
Chloride channels represent a group of targets for major clinical indications. However, molecular screening for chloride channel modulators has proven to be difficult and time-consuming as approaches essentially rely on the use of fluorescent dyes or invasive patch-clamp techniques which do not lend themselves to the screening of large sets of compounds. To address this problem, we have developed a non-invasive optical method, based on digital holographic microcopy (DHM), allowing monitoring of ion channel activity without using any electrode or fluorescent dye. To illustrate this approach, GABA(A) mediated chloride currents have been monitored with DHM. Practically, we show that DHM can non-invasively provide the quantitative determination of transmembrane chloride fluxes mediated by the activation of chloride channels associated with GABA(A) receptors. Indeed through an original algorithm, chloride currents elicited by application of appropriate agonists of the GABA(A) receptor can be derived from the quantitative phase signal recorded with DHM. Finally, chloride currents can be determined and pharmacologically characterized non-invasively simultaneously on a large cellular sampling by DHM.
Resumo:
Monitoring the performance is a crucial task for elite sports during both training and competition. Velocity is the key parameter of performance in swimming, but swimming performance evaluation remains immature due to the complexities of measurements in water. The purpose of this study is to use a single inertial measurement unit (IMU) to estimate front crawl velocity. Thirty swimmers, equipped with an IMU on the sacrum, each performed four different velocity trials of 25 m in ascending order. A tethered speedometer was used as the velocity measurement reference. Deployment of biomechanical constraints of front crawl locomotion and change detection framework on acceleration signal paved the way for a drift-free integration of forward acceleration using IMU to estimate the swimmers velocity. A difference of 0.6 ± 5.4 cm · s(-1) on mean cycle velocity and an RMS difference of 11.3 cm · s(-1) in instantaneous velocity estimation were observed between IMU and the reference. The most important contribution of the study is a new practical tool for objective evaluation of swimming performance. A single body-worn IMU provides timely feedback for coaches and sport scientists without any complicated setup or restraining the swimmer's natural technique.
Resumo:
Presented is an accurate swimming velocity estimation method using an inertial measurement unit (IMU) by employing a simple biomechanical constraint of motion along with Gaussian process regression to deal with sensor inherent errors. Experimental validation shows a velocity RMS error of 9.0 cm/s and high linear correlation when compared with a commercial tethered reference system. The results confirm the practicality of the presented method to estimate swimming velocity using a single low-cost, body-worn IMU.
Resumo:
Background Multiple Sclerosis (MS) is an acquired inflammatory demyelinating disorder of the central nervous system (CNS) and is the leading cause of nontraumatic disability among young adults. Activated microglial cells are important effectors of demyelination and neurodegeneration, by secreting cytokines and others neurotoxic agents. Previous studies have demonstrated that microglia expresses ATP-sensitive potassium (KATP) channels and its pharmacological activation can provide neuroprotective and anti-inflammatory effects. In this study, we have examined the effect of oral administration of KATP channel opener diazoxide on induced experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Methods Anti-inflammatory effects of diazoxide were studied on lipopolysaccharide (LPS) and interferon gamma (IFNy)-activated microglial cells. EAE was induced in C57BL/6J mice by immunization with myelin oligodendrocyte glycoprotein peptide (MOG35-55). Mice were orally treated daily with diazoxide or vehicle for 15 days from the day of EAE symptom onset. Treatment starting at the same time as immunization was also assayed. Clinical signs of EAE were monitored and histological studies were performed to analyze tissue damage, demyelination, glial reactivity, axonal loss, neuronal preservation and lymphocyte infiltration. Results Diazoxide inhibited in vitro nitric oxide (NO), tumor necrosis factor alpha (TNF-¿) and interleukin-6 (IL-6) production and inducible nitric oxide synthase (iNOS) expression by activated microglia without affecting cyclooxygenase-2 (COX-2) expression and phagocytosis. Oral treatment of mice with diazoxide ameliorated EAE clinical signs but did not prevent disease. Histological analysis demonstrated that diazoxide elicited a significant reduction in myelin and axonal loss accompanied by a decrease in glial activation and neuronal damage. Diazoxide did not affect the number of infiltrating lymphocytes positive for CD3 and CD20 in the spinal cord. Conclusion Taken together, these results demonstrate novel actions of diazoxide as an anti-inflammatory agent, which might contribute to its beneficial effects on EAE through neuroprotection. Treatment with this widely used and well-tolerated drug may be a useful therapeutic intervention in ameliorating MS disease.
Resumo:
Silene dioica is a diploid, dioecious, perennial, insect-pollinated herb and part of the deciduous phase of primary succession in Skeppsvik Archipelago, Gulf of Bothnia, Sweden. These islands are composed of material deposited and left underwater by melting ice at the end of the last ice age. A rapid and relatively constant rate of land uplift of 0.9 cm per year continually creates new islands available for colonization by plants. Because the higher deposits appear first, islands differ in age. Because it is possible to estimate the ages of islands and populations of plant species belonging to early stages of succession, the genetic dynamics occurring within an age-structured metapopulation can be investigated in this archipelago. Fifty-two island populations of S. dioica of known ages, sizes, and distances from each other were studied through electrophoretic data. A number of factors increase the degree of genetic differentiation among these island populations relative to an island model at equilibrium. Newly founded populations were more differentiated than those of intermediate age, which suggests that colonization dynamics increase genetic variance among populations. The very old populations, which decrease in size as they approach extinction, were more differentiated than intermediate-aged populations. Isolation by distance occurs in this system. Colonizers are likely to come from more than one source, and the migrant pool model best explains colonization events in the archipelago. Degree of environmental exposure also affects population differentiation.
Resumo:
[cat] Es presenta un estimador nucli transformat que és adequat per a distribucions de cua pesada. Utilitzant una transformació basada en la distribució de probabilitat Beta l’elecció del paràmetre de finestra és molt directa. Es presenta una aplicació a dades d’assegurances i es mostra com calcular el Valor en Risc.
Resumo:
The amiloride-sensitive epithelial Na channel (ENaC) is a heteromultimeric channel made of three alpha beta gamma subunits. The structures involved in the ion permeation pathway have only been partially identified, and the respective contributions of each subunit in the formation of the conduction pore has not yet been established. Using a site-directed mutagenesis approach, we have identified in a short segment preceding the second membrane-spanning domain (the pre-M2 segment) amino acid residues involved in ion permeation and critical for channel block by amiloride. Cys substitutions of Gly residues in beta and gamma subunits at position beta G525 and gamma G537 increased the apparent inhibitory constant (Ki) for amiloride by > 1,000-fold and decreased channel unitary current without affecting ion selectivity. The corresponding mutation S583 to C in the alpha subunit increased amiloride Ki by 20-fold, without changing channel conducting properties. Coexpression of these mutated alpha beta gamma subunits resulted in a non-conducting channel expressed at the cell surface. Finally, these Cys substitutions increased channel affinity for block by external Zn2+ ions, in particular the alpha S583C mutant showing a Ki for Zn2+ of 29 microM. Mutations of residues alpha W582L, or beta G522D also increased amiloride Ki, the later mutation generating a Ca2+ blocking site located 15% within the membrane electric field. These experiments provide strong evidence that alpha beta gamma ENaCs are pore-forming subunits involved in ion permeation through the channel. The pre-M2 segment of alpha beta gamma subunits may form a pore loop structure at the extracellular face of the channel, where amiloride binds within the channel lumen. We propose that amiloride interacts with Na+ ions at an external Na+ binding site preventing ion permeation through the channel pore.
Resumo:
BACKGROUND: Dysregulation of voltage-gated sodium channels (Na(v)s) is believed to play a major role in nerve fiber hyperexcitability associated with neuropathic pain. A complete transcriptional characterization of the different isoforms of Na(v)s under normal and pathological conditions had never been performed on mice, despite their widespread use in pain research. Na(v)s mRNA levels in mouse dorsal root ganglia (DRG) were studied in the spared nerve injury (SNI) and spinal nerve ligation (SNL) models of neuropathic pain. In the SNI model, injured and non-injured neurons were intermingled in lumbar DRG, which were pooled to increase the tissue available for experiments. RESULTS: A strong downregulation was observed for every Na(v)s isoform expressed except for Na(v)1.2; even Na(v)1.3, known to be upregulated in rat neuropathic pain models, was lower in the SNI mouse model. This suggests differences between these two species. In the SNL model, where the cell bodies of injured and non-injured fibers are anatomically separated between different DRG, most Na(v)s were observed to be downregulated in the L5 DRG receiving axotomized fibers. Transcription was then investigated independently in the L3, L4 and L5 DRG in the SNI model, and an important downregulation of many Na(v)s isoforms was observed in the L3 DRG, suggesting the presence of numerous injured neurons there after SNI. Consequently, the proportion of axotomized neurons in the L3, L4 and L5 DRG after SNI was characterized by studying the expression of activating transcription factor 3 (ATF3). Using this marker of nerve injury confirmed that most injured fibers find their cell bodies in the L3 and L4 DRG after SNI in C57BL/6 J mice; this contrasts with their L4 and L5 DRG localization in rats. The spared sural nerve, through which pain hypersensitivity is measured in behavioral studies, mostly projects into the L4 and L5 DRG. CONCLUSIONS: The complex regulation of Na(v)s, together with the anatomical rostral shift of the DRG harboring injured fibers in C57BL/6 J mice, emphasize that caution is necessary and preliminary anatomical experiments should be carried out for gene and protein expression studies after SNI in mouse strains.