902 resultados para Cellulose.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A kind of optical pH sensor was demonstrated that is based on a pH-sensitive fluorescence dye-doped (eosin) cellulose acetate (CA) thin-film modified microstructured polymer optical fiber (MPOF). It was obtained by directly inhaling an eosin-CA-acetic acid mixed solution into array holes in a MPOF and then removing the solvent (acetic acid). The sensing film showed different fluorescence intensities to different pH solutions in a pH range of 2.5-4.5. Furthermore, the pH response range could be tailored through doping a surfactant, hexadecyl trimethyl ammonium bromide (CTAB), in the sensing film. (c) 2007 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

砷是毒性最强的元素之一,水体中砷的污染己经引起人们广泛的关注。我国的新疆、内蒙、山西和台湾等省和地区地下水砷含量严重超标。全球共有5,000多万人遭受高砷饮用水的威胁,其中中国有1,500多万,是饮用水砷污染最严重的国家之一。WHO推荐饮用水砷的最高允许浓度从原来的50 µg•L-1已降至10 µg•L-1。更为严格的砷卫生标准的颁布,对作为饮用水源的地下水中的砷去除工艺提出了更高的要求。吸附法除砷比膜法、混凝法和离子交换法更安全、简便,是砷去除工艺中最有效的方法之一。 首先,本研究通过优化制备条件(包括炭种类的选择、炭的粒径大小、还原剂的浓度及滴定速率、反应温度、铁盐的种类及浓度、分散剂的比例及浓度),制备了负载型纳米铁。考虑到砷的去除效率、工程应用的可行性以及经济性,最优的制备条件如下:选用粒径为20~40目煤质炭,在室温、一定的分散剂比例及浓度,0.2 M KBH4滴速为20 d•min-1时所制备的Fe/炭为82.0 mg•g-1;纳米铁在活性炭孔内呈针状,其直径为30~500 nm,长度为1,000~2,000 nm。绝大多数的铁都负载到活性炭内部,这在处理水时铁不流失很重要。 其次,利用制备的负载型纳米铁作吸附载体,进行了饮用水中As(Ⅴ)的吸附去除实验。研究了该吸附剂对As(Ⅴ)的吸附等温线、动力学以及影响动力学的各种因素(包括As(Ⅴ)的不同初始浓度、吸附剂用量、pH值、共存离子和不同温度)、pH值、共存离子等环境条件对As(Ⅴ)去除的影响;以及吸附剂的再生及再生后的吸附效率等。研究发现在前12 h内吸附较快,72 h时达到了平衡。用Langmuir 吸附等温式估算出As(Ⅴ)的吸附量为12.0 mg•g-1。该吸附剂在pH 6.5, (25±2)℃, As(Ⅴ)初始浓度为2 mg•L-1,吸附剂用量为1.0 g•L-1时,As(Ⅴ)的去除率为75.2%;当把吸附剂的用量增加到1.5 g•L-1时,As(Ⅴ)的去除率可达99.9%以上。吸附剂可以用0.1M的NaOH浸泡12 h后即可再生,再生效率较高。常见的阴离子中PO43-、SiO32-对As(Ⅲ)的去除抑制较大,而SO42-、CO32-、C2O42-等离子对砷的去除影响较小。Fe2+对As(Ⅲ)的吸附抑制作用较大而其它阳离子影响不大。吸附剂可用0.1 M NaOH 有效再生,并且具有良好的机械性能。实验室初步实验数据表明,该吸附剂对饮用水除砷具有较好的应用前景。 第三,利用实验室制备的负载型纳米铁对饮用水中As(Ⅲ)的吸附去除也进行了研究。考察了吸附等温线、动力学以及影响动力学的各种因素、pH值、共存离子等环境条件对As(Ⅲ)去除的影响;以及吸附剂的再生及再生后的吸附效率等。研究发现,该吸附剂在pH 6.5, (25±2)℃, As(Ⅲ)初始浓度为2 mg•L-1,吸附剂用量为1.0 g•L-1时, 对As(Ⅲ)的去除率为99.8%;其吸附容量为1.996mg•g-1。吸附过程中部分As(Ⅲ)被氧化。与As(Ⅴ)的吸附相比,该吸附剂对As(Ⅲ)的效率比较高-而常见的其它除砷吸附剂如载铁纤维棉等,对As(Ⅴ)的效率比As(Ⅲ)高,为有效去除As(Ⅲ),常常需要专门加上氧化这一过程。 最后,利用负载型纳米铁对饮用水中As(Ⅲ) 的氧化性能进行考察,发现该吸附剂不但能够有效吸附去除饮用水中的砷,而且还能把As(Ⅲ)有效地氧化为As(Ⅴ)。经过对吸附剂的构成组分分析发现,活性炭表面因富含多种官能团而对三价砷的氧化作用最大;其次是纳米铁也能把As(Ⅲ)氧化为As(Ⅴ)。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

花椒(Zanthoxylum bungeanum)是川西干旱河谷地区重要的经济作物,化感作用是花椒连作障碍的重要原因之一。花椒凋落物分解是影响花椒林地土壤肥力及花椒产量的重要因素,因此系统研究花椒化感作用是否对花椒凋落物的分解产生影响可以为解决花椒连作障碍导致的产量下降等问题提供科学的理论依据。本文通过室内模拟实验研究了花椒凋落物的四个分解动态以及分解后凋落物浸提液对花椒林地土壤性质的影响;通过野外盆栽实验研究了花椒凋落物浸提液对花椒幼苗的生长、花椒凋落物的质量及土壤性质的影响。最终从生理生化角度揭示了花椒的化感作用对凋落物分解的影响机理,为深入解决花椒连作障碍问题、对花椒凋落物采取有效的人工措施提供了科学的理论依据。主要的研究结果如下: 1. 室内分解实验证明,花椒凋落物在分解的60 d 内分解速率呈现由大到小的变化趋势,并且凋落物分解呈现明显的毒性动态。凋落物在分解的10 d、30 d 时,分解速率较大,30 d 以后分解速率显著降低。凋落物分解的10 d 左右酚酸释放量最大,此时凋落物的毒性最大,凋落物分解到10 d 以后,酚酸释放量逐渐减少,凋落物的毒性也逐渐减小。 2. 四个分解动态的花椒凋落物浸提液对土壤化学性质产生了显著的影响。花椒凋落物在分解的60 d 内,其浸提液使土壤pH值均显著的增加。分解0 d 的凋落物浸提液显著的降低了土壤铵态氮的含量,抑制了纤维素分解菌的生长;分解60 d 的凋落物浸提液显著的降低了土壤酚酸含量,增加了土壤有效磷的含量;分解30 d 和60 d 的凋落物浸提液均显著的促进了好气性纤维素分解菌的生长。这说明花椒凋落物在分解过程中呈现出明显的毒性动态:凋落物分解的初期毒性作用较大,随着分解的继续进行特别是在分解的30 d 以后,其毒性作用慢慢降低。 3. 花椒凋落物浸提液对花椒幼苗表现出明显的化感作用。不同浓度的浸提液对花椒幼苗地上及地下生物量、叶面积均产生了显著的抑制作用,并且随着浸提液浓度的升高抑制作用加强。凋落物浸提液对叶片厚度的影响较小,只有Y1对叶片厚度的生长抑制作用显著。 4. 花椒的化感作用改变了凋落物的质量,并对凋落物分解产生了显著的影响。对花椒幼苗用不同浓度的凋落物浸提液进行处理,Y1使凋落物有机碳含量、木质素含量、C/N、木质素/氮显著降低,纤维素含量显著升高;Y3使凋落物有机碳含量、木质素含量、C/N、木质素/氮显著升高。花椒凋落物质量的改变显著的影响了凋落物的分解,凋落物的分解速率大小依次为:Y1(10.15 a-1)> Y2(8.71 a-1)> CK(6.41 a-1)> Y3(5.08 a-1)。 5. 花椒的化感作用改变了土壤性质,并对凋落物分解产生了显著的影响。对花椒幼苗用不同浓度的凋落物浸提液处理的同时,也改变了土壤性质。不同浓度的凋落物浸提液显著的升高了土壤pH值、有机碳含量。各种浓度的凋落物浸提液对土壤多酚氧化酶的活性均起到了显著的促进作用。凋落物浸提液Y1对土壤纤维素分解酶的活性、细菌和真菌的生长也具有显著的促进作用。土壤性质的改变显著的影响了凋落物的分解,凋落物的分解速率大小依次为:Y1(10.30 a-1)>Y2(9.60 a-1)>CK(6.41 a-1)>Y3(6.29 a-1)。 6. 不论是凋落物质量发生改变还是土壤性质发生改变,在凋落物分解的整个过程中,C元素始终处于单调净释放的状态,并且C释放量与分解速率成显著的正相关,即凋落物分解越快,凋落物C释放量越大。凋落物分解过程中,均出现了酚酸大量释放的情况,并与凋落物分解速率成显著正相关。凋落物分解后的木质素含量、木质素/氮均增加,并且随着浸提液浓度的升高,凋落物木质素含量、木质素/氮升高。 Zanthoxylum bungeanum is an important economic crop in dry valley of the Minjiang river (Sichuan, Southwest China), but allelopathy is one of the important reasons for its continuous cropping. Zanthoxylum bungeanum litter decomposition affects Zanthoxylum bungeanum soil fertility and its output. So systemically investigate if allelopathy affects litter decomposition could provide the scientific methods to solve the problem of output fall caused by the continuous cropping. In this paper, the releasing dynamics of phenolic acid during Zanthoxylum bungeanum litter decomposition (0, 10, 30 and 60 days) and the effects of its aqueous extract on soil chemical properties were investigated via the laboratory study. Effects of Zanthoxylum bungeanum litter aqueous extract on the growth of young Zanthoxylum bungeanum seedlings, litter qualities and the soil qualities were investigated via the field study. Finally, we open out the action manner of Zanthoxylum bungeanum allelopathic effect on the litter decomposition, and provide the theoretical basis to solve the Zanthoxylum bungeanum continuous cropping. The main results showed that: 1. The laboratory litter decomposition experiment showed a trend of decomposition rate from large to small and an occurrence of phytotoxicity with clear dynamic patterns during Zanthoxylum bungeanum litter decomposition. The litter decomposition rate was larger at the tenth and 30th day during 60-day litter decomposition and gradually decreased after 30 days of litter decompostion. The releasing quantity of the litter phenolic acid was the highest at the tenth day, and here, the litter toxicity was the biggest. The releasing quantity of the litter phenolic acid gradually decreased after 10 days of litter decomposition, so the phytotoxicity of litter was gradually decreased with the litter decomposition. 2. The Zanthoxylum bungeanum litter aqueous extract after four decomposition stages had significantly effect on the soil chemical qualities. The pH value in soil was significantly increased in litter aqueous extract of four decomposition stages. The NH+4-N concentration was significantly decreased in soil amended with litter aqueous extract of 10-day decomposition which inhibited the growth of Aerobic cellulose-decomposer. The growth of soil Aerobic cellulose-decomposer was promoted by the litter aqueous extract of 30-day decomposition. Available phosphorus concentration was significantly increased and phenolic acid content was significantly decreased in soil amended with litter aqueous extract of 60-day decomposition which promoted the growth of Aerobic cellulose-decomposer. The study results showed an occurrence of phytotoxicity with clear dynamic patterns during Zanthoxylum bungeanum litter decomposition. The phytotoxicity of litter was the largest at the initial stage, but the phytotoxicity gradually decreased with the litter decomposition, especially after 30 days of decomposition. 3. The field study indicated that the Zanthoxylum bungeanum litter aqueous extract had significant allelopathic effects on the growth of young seedlings.Different concentration aqueous extract had signinficant inhibiting effects on biomass and leaf area of young seedlings. The inhibiting effect on the biomass strengthened with the litter aqueous extract concentration augment. Litter aqueous extracts had less effect on the leaf thickness, and only Y1 had significant inhibiting effect on the leaf thickness. 4. The Zanthoxylum bungeanum allelopathy had significant effect on the litter qualities and the litter decomposition. Treating the young Zanthoxylum bungeanum seedlings with different concentration of litter aqueous extracts, the leaf litter organic C, lignin, C/N and lignin/N all decreased and the cellulose content increased under Y1 treatment. The leaf litter organic C, lignin, C/N and lignin/N all increased under Y3 treatment. So the litter decomposition was significant affectded by the litter qualities, and the litter decomposition rate was Y1(10.15 a-1)> Y2(8.71 a-1) > CK(6.41 a-1) > Y3(5.08 a-1). 5. The Zanthoxylum bungeanum allelopathy had significant effect on the soil qualities and the litter decomposition. Treating the young Zanthoxylum bungeanum seedlings with different concentration of litter aqueous extracts, also changed the soil qualities. Different concentration of litter aqueous extracts had significant effects on the soil pH and organic C content. Every concentration of litter aqueous extracts accelerated the soil Polyphenol Oxidase activity and Y1 accelerated the soil Cellulase activity, the number of soil bacteria and fungi. So the litter decomposition was significant affected by the soil qualities, and the litter decomposition rate was Y1(10.30 a-1) > Y2 (9.60 a-1) >CK(6.41 a-1)>Y3(6.29 a-1)。 6. Whether the litter or soil qualities changed, the litter C element at the state of release at all times during the litter decomposition, and the release quantity increased with the decomposition rate augment. Litter released plentiful total penolics content during decomposition, and the release quantity had the positive correlation with the litter decomposition rate. The litter lignin content and the lignin/N all increased with the litter aqueous extracts concentration augment after litter decomposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

碳水化合物按其存在的形式可分为结构性碳水化合物和非结构性碳水化合物两种。前者主要用于植物体的形态建成;后者是参与植物生命代谢的重要物质。迄今为止,有关CO2浓度升高对植物叶片中的碳水化合物含量的研究较多,而对其它器官中碳水化合物含量以及碳水化合物在植物体内的分配响应研究较少。碳水化合物含量在植物各器官中的变化能够反映光合同化产物在叶和茎、枝和根中的转运情况;碳水化合物的分配与植物的生长模式相关,它的变化会对植物的生长情况产生影响。因此,为全面认识植物生理生化与生长过程对大气CO2浓度升高响应情况,需要对CO2浓度升高条件下植物体内碳水化合物的含量及分配变化进行深入的研究与探讨。本文应用自控、独立、封闭的生长室系统,研究了红桦幼苗根、茎、叶和枝的碳水化合物含量以及分配格局对大气CO2浓度升高(环境CO2浓度+350 µmol·mol-1) 的响应。研究结果表明:1) CO2浓度升高使红桦幼苗叶片中的非结构性碳水化合物含量显著增加。这可能会对光合作用造成反馈抑制,降低光合速率。2) CO2浓度升高使红桦幼苗根、茎和枝中的还原糖、蔗糖、总可溶性糖、淀粉和总的非结构性碳水化合物(TNC) 含量显著增加。说明CO2浓度升高促进了碳水化合物由叶片向枝、茎和根中的运输转移,支持了Finn和Brun的假设。3) 在总的非结构性碳水化合物(TNC) 中,淀粉所占比例最大。同样地,CO2浓度升高使TNC含量增加的部分中,淀粉所占的比例也最大。在叶片、枝、茎和根中淀粉含量增加部分占TNC含量增加部分的91.45%、88.23%、83.23%和82.01%。4) CO2浓度升高使红桦幼苗根、茎、叶和枝内的纤维素含量有增加的趋势,但未达到显著水平。需要进一步研究长期CO2浓度升高下,纤维素含量的响应程度。5) CO2浓度升高使碳水化合物在红桦幼苗体内的分配发生了改变。红桦幼苗体内碳水化合物分配变化的一致趋势是由地上部分向地下部分分配转移。其中,测定的所有碳水化合物均向根中分配增多。同时,CO2浓度升高使红桦幼苗的根冠比显著增大;根系干重显著增加。这些结果支持了Gorissen 和Cotrufo的假设,即碳水化合物向根中分配增多是根冠比增大的主要原因。6) CO2浓度升高使红桦幼苗体内的氮含量显著下降。氮含量的下降可能主要是由生长的加快和TNC (主要是淀粉) 含量的增加对氮的稀释造成的。Carbohydrates found in plants are frequently grouped into two different classes:structural carbohydrates and non-structural carbohydrates. The former mainlyconstruct the plant basic framework, while the latter are essential for plant growth andmetabolism. As yet there is lack of information on the effects of elevated CO2concentration on carbohydrate contents in stem, branch and root of plant, and oncarbohydrate allocation in organs of plant although there have been many reports onthe responses of carbohydrate contents to elevated CO2 concentration in plant foliages.A shift of carbohydrate contents in plant reflects a change in transporting ofphotosynthetic production from leaf to stem, branch and root of plant. The allocationof carbohydrates that is correlated to plant growth patterns affects plant growth. Thus,in order to understand the influences of elevated CO2 on biochemical process,physiological change and plant growth well, the response of carbohydrate contentsand allocation in plant to elevated CO2 should be further investigated. In our study, theeffects of elevated CO2 on carbohydrate contents and their allocation between leaf,stem, branch and root tissue of Betula albosinensis seedlings were determined. Theseedlings were grown in independent and enclosed-top chambers. Chambers werecontrolled to reproduce ambient (CK) and ambient + 350 µmol·mol-1 CO2 (EC)concentration for 1 year. The results here showed that,1) Elevated CO2 significantly increased non-structural carbohydrate contents in leafof red birch seedlings. This will reduce photosynthetic rate.2) Elevated CO2 also significantly increased non-structural carbohydrate contentsin root, stem and branch of red birch seedlings. These findings supported thehypothesis that elevated CO2 accelerated carbohydrates from leaf to branch, stem androot.3) Starch makes up the largest parts of total non-structural carbohydrate. In thesame way, the increase of starch plays a main role in the increase of totalnon-structural carbohydrate under elevated CO2. In leaf, branch, stem and root, theincrements of starch contents comprised 91.45%, 88.23%, 83.23% and 82.01% of theincrements of total non-structural carbohydrate contents.4) Under elevated CO2 the cellulose contents have an increasing tendency in redbirch seedlings. It is needed to investigate the effects of long-term elevated CO2 oncellulose contents in plant.5) There are significant CO2 effects on the allocation of carbohydrate in organs ofred birch seedlings. Under elevated CO2 more carbohydrates were allocated to root.Moreover, CO2 enrichment significantly increased the root to shoot ratio of red birchseedlings and the dry weight of roots. These results supported Gorissen and Cotrufo ‘shypothesis that increase of carbohydrate allocation to root mostly contributed to theincrease of root to shoot ratio.6) Elevated CO2 brought about a reduction in the nitrogen contents of leaf, stem,branch and root. The decline of nitrogen contents under elevated CO2 is mainlycaused by the dilution effects of increasing starch level and growth of red birchseedlings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对15株白腐真菌进行了以玉米秸秆为基质的初步筛选,从中获得一株选择性系数较高的菌株Y10,并对其降解玉米秸秆的情况进行了研究。结果表明,在30天的培养过程中菌株Y10对玉米秸秆降解的选择性系数都大于1,第15天选择性系数最高为3.88。对未经降解和降解过的玉米秸秆分别作了紫外光谱和红外光谱分析,结果表明,经该菌降解后玉米秸秆的化学成分发生了很大变化,且木质素的降解程度要大于纤维素的降解程度。对菌株Y10进行了ITS-5.8S rDNA序列鉴定,初步判定其为Cerrena sp.。 为了考查不同的外源添加物对菌株Y10降解玉米秸秆的影响,在以玉米秸秆为基质的固态发酵培养基中分别添加了7种金属离子、8种碳源、6种氮源。结果显示,这7种金属离子均能促进木质素的降解,并且一定浓度的某些离子明显抑制纤维素的降解;其中添加0.036%的MnSO4·H2O和0.36%的MgSO4·7H2O对纤维素降解的抑制作用比较强,降解率分别为0.96%和1.31%,木质素的选择性系数分别达到了34.40和20.17。8种碳源中除麦芽糖外都能促进木质素的降解,除微晶纤维素外都明显促进纤维素的降解。6种氮源中酒石酸铵、硫酸铵、草酸铵和氯化铵的添加都会使该菌生长变慢,而且氮源浓度越高菌丝生长越慢。外加碳源和金属离子对半纤维素降解和选择性系数的影响不大。 同时对菌株Y10在液态培养下产木质素降解酶的条件和培养基做了优化。结果表明,在初始产酶培养基中,菌株Y10的漆酶酶活在第10d达到最高,锰过氧化物酶酶活在第11d达到最高,基本上检测不到木质素过氧化物酶。菌株Y10产漆酶的最适温度为32℃,最适PH为6.0;产锰过氧化物酶的最适温度为32℃,最适PH为6.5。菌株Y10产漆酶的最佳碳源为甘露糖,最佳氮源为酒石酸铵,最适诱导剂VA浓度为3 mmol/L,最适表面活性剂TW-80浓度为1%。 利用响应面法对其产漆酶的培养基进行优化,优化后的培养基配方为葡萄糖10.00 g/L,酒石酸铵0.50 g/L,大量元素296.50 ml/L,微量元素100.00 ml/L,NTA 1.40 g/L,VA 5.00 mmol/L,吐温-80加入量为0.10%。进行了菌株Y10产漆酶的验证实验,实测酶活为5282.56 U/L,与预测酶活5162.73 U/L接近。在优化后培养基中,菌株Y10在第14 d达到生长的最高峰,第20 d时,漆酶酶活最高,为11325.00 U/L;第16 d时,锰过氧化物酶酶活最高,为30.77 U/L。 对菌株Y10的漆酶酶学性质做了初步的研究,结果显示,酶反应的最适温度为40℃-65℃,最适PH为3.0。在40℃,PH=3.0时,漆酶催化ABTS反应的米氏方程为 。 Fifteen white-rot fungi based on corn stalk were screened. One white-rot fungus Y10 with high selectivity value was obtained. The degradation of corn stalk was initially studied. The results indicated that the selectivity value was above 1 during the 30 day-cultivation and the highest was 3.88 after 15 days. The composition of untreated and treated stalk was analyzed through ultraviolet spectroscopy and infrared spectroscopy. It was found that the composition of treated stalk was greatly altered and the degree of the degradation of lignin is greater than the cellulose. Y10 was identified as Cerrena sp. by ITS -5.8S rDNA sequence analysis. The influence of metal ions, carbon sources and nitrogen sources on corn stalk degradation by white-rot fungus was studied. While all seven metal ions could promote lignin degradation, the cellulose degradation was best inhibited at certain ion concentrations. Notably, when 0.036% MnSO4·H2O and 0.36% MgSO4·7H2O were added into the medium, the cellulose degradation was restrained to the extents that the coefficients of lignin selectivity rose to 34.40 and 20.17 respectively. It was also found that all carbon sources except maltose can promote lignin degradation. The addition of carbon sources other than microcrystalline cellulose significantly promoted cellulose degradation. The addition of the nitrogen sources, ammonium tartrate, ammonium sulfate, oxalate, ammonium chloride, resulted in remarkable inhibition to mycelium growth; the larger the concentrations of nitrogen sources are, the slower the mycelium grew. The addition of carbon sources and metal ions had less impact on the degradation of hemicellulose and selectivity value. Meanwhile, we optimized the conditions and culture medium of the lignin-degrading enzyme production of strain Y10. The results showed that in the initial culture medium, the Lac activity was highest at the 10th day, the MnP activity was highest at the 11th day and the LiP could not be detected. The optimum condition of Lac was at temperature 32 and PH =6.0 and the optimum condition of MnP was at temperature 32 and PH =6.5. The optimum carbon source for Lac was seminose, the optimum nitrogen source was ammonium tartrate, the optimum content of VA was 3 mmol/L, the optimum content of TW-80 was 1%. PB and RSM were used to optimize the culture medium of laccase by white-rot fungus Y10. The optimum culture medium was consist of glucose 10.00 g/L, ammonium tartrate 0.50 g/L, macro elements 296.50 ml/L, trace elements 100.00 ml/L, NTA 1.40 g/L, VA 5.00 mmol/L, TW-80 0.10%. Under the optimal conditions, the activity of laccase was 5282.56 U/L and the experimental value agreed with the predicted value 5162.73 U/L. The biomass was highest at the 14th day, the Lac activity was highest at the 20th day, the MnP activity was highest at the 16th day. The results of the studies on the characteristics of Lac showed that the optimum temperature for Lac activity is 40℃-65℃ ; the optimum PH for Lac activity is 3.0 and under 40℃,PH=3.0, the Michaelis-menten equation of Lac catalized ABTS oxidation was .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文从不同厌氧生境中获得7组(C-2、Y-2、L-2 、NZ、H-3、CZ、L-3)具有纤维素降解能力的复合菌系。经过不断传代、淘汰纤维素降解能力降低的菌系,最后得到一组高效、传代稳定的厌氧纤维素分解复合菌系L-3。该菌系可使滤纸在42 h内溃烂,并能在分解纤维素的同时产氢气。对L-3复合菌系的产酶条件进行了研究,结果表明,在实验范围内该菌系的产酶最适条件为:pH 6.5,温度37 ℃,接种量5 %,最佳碳源为滤纸,最佳氮源为硫酸铵。第10天测得羧甲基纤维素酶(CMCase)、滤纸酶(FPA)、外切葡聚糖酶(C1)、β-葡聚糖苷酶(β-glucodase)的酶活分别为0.216 U/ml、0.101 U/ml、0.132 U/ml、0.002 U/ml,滤纸失重率70.6 %。发酵代谢产物乙醇和丁酸含量分别可达1378 mg/L 、2695 mg/L,发酵产生的气体中氢气含量最高可达70.2 %。DGGE结果表明该菌系主要由14种菌组成,其中有三株菌在发酵前后菌数发生了明显的变化,说明在以滤纸为底物的降解过程中,这三株菌起到了重要作用,对这三株菌进行了分子生物学鉴定,初步定为Clostridium phytofermentans、Clostridium cellulovorans、Desulfovibrio sp。 利用实验室分离得到的纤维素降解菌,最终配制出由10、X-1、X-13、ST-13、L-3组成的好氧-厌氧纤维素降解复合菌剂。以秸秆为发酵底物,菌剂接种量1%,利用复合菌剂预处理后的秸秆,发酵总产气量相对于对照提高了71.62%,甲烷含量最高可达70.08%。 A group of microbial consortia L-3 was isolated from the anaerobic fermentation residue of corn stalk, which could degrade cellulose and produce hydrogen. The CMCase, FPA, C1 and β-glucosidase activity of L-3 could reach to 0.216 U/ml, 0.101 U/ml, 0.132 U/ml and 0.002 U/ml, respectively. In the filter degrading process, the filter paper collapsed in the liquid culture within 42 h and the filter degrading rate could reach to 70.6% in the 13 days, meanwhile, hydrogen was determined and the highest hydrogen content was 70.2%. The optimum cellulase-degrading conditions were filter papaer as the carbon source, (NH4)2SO4 as the nitrogen source, 37 ℃ and pH 6.5 in this experiment. DGGE results showed that the microbial consortia L-3 mainly included 14 strains. The amount of 3 strains were changed during the fermentation. These strains were identified as Clostridium phytofermentans、Clostridium cellulovorans、Desulfovibrio sp by 16S rDNA sequence analysis. The cellulose- degrading microbial agent was composed by 10, X-1, X-13, ST-13, L-3 which were isolated in the laboratory. The straw pretreated by cellulose-degrading microbial agent was used to ferment, the total biogas production increased by 72% comparing to the control. The content of methane could reach to 70.08%。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文从新鲜大熊猫粪便和实验室保存的沼气发酵富集物中筛选得到 4 株厌氧纤维素分解菌B5、C3、D3-2、D4-1,利用这4 株菌预处理秸秆,然后将预处理后的秸秆用本实验室保存的厌氧产氢菌来发酵进行生物产氢。同时还比较研究了:○1 用1% H2SO4、25% NH3 · H2O和12% NaOH对秸秆进行化学预处理;○2 用厌氧纤维素分解菌对秸秆进行生物预处理;○3 化学与生物组合预处理对秸秆发酵生物产氢的影响。实验结果表明:12% NaOH和生物组合预处理后的秸秆发酵产氢效果最好,其产氢量为21.04 mL g-1,是未经预处理秸秆的75 倍;最高氢气浓度为57.3%,是未经预处理秸秆的96 倍;其产氢的最适pH 为4.5 ~ 6.0,最佳底物浓度为45 ~ 55 g L-1;其发酵过程中的挥发性脂肪酸(VFAs)以乙酸和丁酸为主。 本实验筛选到的 4 株厌氧纤维素分解菌株中,B5 和D4-1 在降解纤维素的同时还具有直接以纤维素为底物产氢的功能,因此本文分别对菌株B5 和D4-1 以及二者的组合菌株B5+D4-1 直接利用秸秆为基质发酵生物产氢做了初步探索研究。结果发现:组合菌株发酵产氢的效果以及对秸秆纤维素和半纤维素的降解率要比单菌株好。菌株B5+D4-1 发酵,秸秆的产氢量为11.4 mL g-1,分别是B5 和D4-1 单菌株的1.6 倍和3.1 倍;组合菌株B5+D4-1 发酵的最大氢气浓度为31.6%,分别是B5 和D4-1 单菌株的1.3 倍和2.4 倍。在发酵过程中,组合菌株B5+D4-1 对秸秆纤维素和半纤维素的最高降解率分别为35.0%和11.8%,分别是菌株B5 的1.2 倍和1.1 倍,是菌株D4-1的1.5 倍和1.3 倍。菌株B5,D4-1 以及组合菌株B5+D4-1 发酵过程产生的挥发性脂肪酸(VFAs)均以乙酸为主。菌株B5 单独发酵过程中只检测到乙酸和丁酸,菌株D4-1 单独发酵以及组合菌株B5+D4-1 发酵过程检测到有乙醇、乙酸和丁酸。 The fermentative bio-hydrogen production by anaerobic hydrogen bacteria preserved in our laboratory from the straw which had been pretreated by four anaerobic cellulolytic decomposition strains of B5, C3, D3-2, D4-1 which were isolated and screened from giant panda’s excrement and biogas fermentation enrichments conserved in our laboratory was studied. Besides, the impact of chemical(1% H2SO4、25% NH3·H2O and 12% NaOH), biological (cellulolytic strains of B5, C3, D3-2, D4-1) and chemical-biological combination pretreatment on bio-hydrogen production from straw by fermentation was also comparatively studied. The experiments showed that the best results of bio-hydrogen production were obtained from the straw with 12% NaOH-biological combination pretreatment method, its capability of bio-hydrogen production was 21.04 mL g-1, which was 75 times higher than the straw without pretreatment; the maximum concentration of H2 was 57.3%, which was 96 times higher than the straw without pretreatment; its optimum pH range was 4.5 ~ 6.0, and its optimum range of substrate concentration was 45 ~ 55 g L-1; In the process of fermentation, the main composition of VFAs were acetate and butyrate. Among the four strains of B5, C3, D3-2, D4-1, B5 and D4-1 have the function of hydrogen-producing by cellulose used as substrate when it decompose cellulose, so the preliminary exploration and research on fermentative bio-hydrogen production by B5, D4-1 and B5+D4-1 which directly used straw as substrate was carried out. The results showed that the combination strains of B5+D4-1 was strikingly better than either B5 or D4-1 strain in the fermentative hydrogen production. The hydrogen-production capability of B5+D4-1 was 11.4 mL g-1 which was respectively 1.6 times and 3.1times higher than B5 and D4-1; the maximum hydrogen concentration of B5+D4-1 was 31.6% which was respectively 1.3 times and 2.4 times higher than B5 and D4-1. In the process of fermentation, the maximum degradation rate of cellulose and hemicellulose in straw was respectively 35.0% and 11.8% by B5+D4-1, which was 1.2 times and 1.1 times higher than B5, and was 1.5 times and 1.3 times higher than D4-1 respectively. The Volatile Fattty Acids(VFAs) generated in the process of fermentation with strains of B5, D4-1 and B5+D4-1 were all mainly acetate. Acetate and butyrate were detected in the process of fermentation with B5, ethonal, acetate and butyrate were detected in the process of fermentation with D4-1 and B5+D4-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

木质纤维素原料种类多、分布广、数量巨大,通过燃料乙醇生产技术、厌氧沼气发酵技术将其转化成乙醇、沼气等二次能源,一定程度上可以缓解化石能源的不断消耗所带来的能源危机,也解决了农林废弃物引起的环境污染问题。其中以木质纤维素原料生产燃料乙醇,还可以避免以淀粉类和糖类原料生产燃料乙醇时带来的“与人争粮”等一系列问题。因此具有重要的经济效益、环境效益和社会效益。 然而,木质纤维素原料结构致密,木质素包裹在纤维素、半纤维素外围,导致其很难被降解利用,必须进行适当的预处理,去除木质素,打破原有的致密结构,利于原料的后续利用。因此,预处理成为木质纤维素原料能源化利用的关键。而目前预处理环节的费用过于昂贵,于是寻找一种高效、低成本的预处理方法是当今研究的热点。 本论文采用组合白腐真菌对木质纤维素原料进行生物预处理研究,与其他物理化学法相比,该法有着专一性较强、反应温和、不造成环境污染、成本低等优势。白腐真菌主要通过分泌木质素降解酶对木质素进行降解,从而破坏原料的致密结构,提高后续利用效率。所以木质素降解酶酶活的高低是影响原料预处理效果的一个关键因素。于是本论文首先通过将白腐真菌进行组合的方式提高木质素降解酶(漆酶,Lac)酶活;接着对组合菌的菌株相互作用机理进行研究,阐明组合菌Lac 酶活提高的原因,为菌株组合提高Lac 酶活这种方法的应用提供理论依据,同时也为后续组合白腐真菌预处理木质纤维素原料提供指导;进一步采用固态发酵和木质素降解酶两种方式对木质纤维素原料进行预处理研究,最大化去除木质素成分,破坏原料的致密结构;最终对预处理后原料的酶解糖化进行初步研究,为原料后续的能源化应用奠定基础。具体研究结果如下: (1) 以实验室保存的三株主要分泌Lac 的白腐真菌为出发菌株,筛选得到一组Lac 酶活明显提高的组合菌55+m-6,其中菌株55 为Trametes trogii sp.,m-6 为Trametes versicolor sp.,组合后Lac 酶活较单菌株分别提高24.13倍和4.07 倍。组合菌的最适产酶条件为pH 6.5、C/N 16:1、Tween 80 添加量为0.01%,在该条件下组合菌的Lac 酶活峰值比未优化时提高4.11倍。 (2) 对组合菌55+m-6 菌株间相互作用机理进行研究,发现菌株之间不存在抑制作用;平板培养时,菌丝交界处Lac 酶活最高并分泌棕色色素;液体培养时,菌株m-6 对组合后Lac 酶活的提高起着更为重要的作用:菌株m-6的菌块、过滤灭菌胞外物以及高温灭菌胞外物均能明显刺激菌株55 的Lac产生;菌株55、m-6 进行组合后,同工酶种类未发生增减,但有三种Lac同工酶浓度有所提高;对菌株胞外物进行薄层层析和质谱分析,结果表明组合前后菌株胞外物中各物质在浓度上存在较大的变化。推测组合菌Lac酶活的明显提高,主要是由于菌株m-6 胞外物中的一些物质能刺激菌株55 分泌大量Lac 进行代谢,且这些刺激物质并非菌株m-6 特有,菌株55自身也可以代谢生成,但是适当的浓度才能刺激Lac 的大量分泌。 (3) 将组合菌55+m-6 用于固态发酵预处理木质纤维素原料,发现其对玉米秆的降解程度最大,在粉碎度40 目、含水率65%的最优处理条件下,处理至第15d,秸秆失重率为41.24%,其中木质素、纤维素、半纤维素均有降解,且Lac 和纤维素酶(CMC)酶活以及还原糖量均达到峰值。 (4) 对玉米秆进行木质素降解酶预处理,发现Lac/1-羟基苯并三唑(HBT)系统对玉米秆木质素的降解效果最好,在最优处理条件时,即HBT 用量0.2%、处理时间1d、Lac 用量50U/g,木质素降解率可达12.60%。预处理后玉米秆的致密结构被破坏,比表面积增大,利于后续酶与纤维素、半纤维素成分的结合。 (5) 对预处理后的玉米秆进行酶解糖化,其中组合菌固态发酵预处理后玉米秆的糖化率比对照高4.33 倍;Lac/HBT 系统预处理后玉米秆的糖化率比对照高2.99%,糖化液中主要含有木糖、葡萄糖两种单糖。 There are many kinds and large quantities of lignocellulosic biomass widely distributed on the earth. They can be converted into secondary energy such as fuel ethanol, biogas, et al., which can relieve the energy crisis caused by consumption of fossil energy resources and solve the problem of environmental pollution caused by agriculture and forestry waste. Meanwhile, the production of fuel ethanol from lignocellulosic biomass can ensure food supply to human kind instead of starch- and sugar-containing raw materials. So the energy conversion of lignocellulosic biomass contributes considerable economic, environment and social benefits. However, lignocellulosic biomass has the compact structure, in which lignin surrounds cellulose and hemicellulose, so it must be pretreated before energy usage and pretreatment is one of the most critical steps in the energy conversion of lignocellulosic biomass. At present, the cost of pretreatment is too expensive, so looking for an efficient and low-cost pre-treatment method is one of recent research hot spots. In this research, combined white rot fungi pretreatment method was used, which had some advantages in low cost, high specificity, mild reacting conditions and friendly environmental effects compared with the other physical and chemical methods. White rot fungi secrete lignin degrading enzymes to degrade the content of lignin and damage the contact structure of lignocellulosic biomass, so the activity of the lignin degrading enzymes is the key factor to the degradation effect of raw materials. Firstly, the combined fungi with high laccase activity were screened; secondly, the interaction mechanism between strains was studied, and the cause of higher laccase activity after strains combination was also preliminary clarified; under the guidance of the mechanism, lignocellulosic biomass was pretreated by the combined fungi; lastly, the enzymatic hydrolysis of pretreated lignocellulosic biomass was also preliminary studied; all of the researches could lay the foundation for the energy application of lignocellulosic biomass. The specific research results were as follows: (1) The combined fungi 55+m-6 with significant higher laccase activity were screened from the three white rot fungi stored in our lab which mainly secreted laccase. Strain 55 and strain m-6 were Trametes trogii sp. and Trametes versicolor sp., respectively. The laccase activity of combined fungi was 24.13 and 4.07-fold than strain 55 and strain m-6, respectively. The optimized condition for laccase production of the combined fungi in liquid medium was pH 6.5, C/N 16:1 and Tween 80 0.01%. In this optimized condition, the laccase activity of combined fungi was 4.11-fold higher comparing with which in non-optimized medium. (2) The interaction mechanism between strain 55 and strain m-6 was further studied, and no inhibition effect was observed. Brown pigment was secreted on the junction of the two strains on the plate, where the highest laccase activity was detected. Strain m-6 was much important to boost laccase activity of combined fungi in liquid medium, and strain 55 was stimulated by fungal plug, filter sterilized extracellular substances and high temperature sterilized extracellular substances of strain m-6 to produce laccase. The types of laccase isozymes did not change after combining strain 55 and strain m-6, but the concentrations of three types increased. Mass Spectrometry and TLC analysis of extracellular substances of each strain showed that concentration of some substances considerably changed after strains were combined. It was supposed that the cause of higher laccase activity of combined fungi was mainly due to some extracellular substances of strain m-6 with the appropriate concentration which stimulated laccase secretion of strain 55 and generated not only by strain m-6 but also by strain 55. (3) Combined fungi 55+m-6 were used to lignocellulosic biomass pretreatment with the type of solid-state fermentation. The highest degree of degradation of corn straw was obtained, including the rate of weight loss was 41.24% and the lignin, cellulose and hemicellulose were degraded partially under the optimized condition of 40 mesh, 65% water content on 15th day. Laccase, CMCase activities and content of reducing sugar reached the maximum value on that day. (4) Lignin degrading enzymes from combined fungi 55+m-6 were used for corn straw pretreatment. The most remarkable degradation of lignin in corn straw with Lac/1-hydroxybenzotriazole (HBT) system was observed, and the 12.60% lignin degradation was obtained under the optimized condition of 0.2% HBT, 50 U/g laccase for 1 d. After pretreated by Lac/HBT, the tight structure of corn straw was demolished and specific surface area increased, which had advantages for accessible of enzyme to cellulose and hemicellulose. (5) The corn straws pretreated by combined fungi 55+m-6 with the type of solid-state fermentation and Lac/HBT were used for enzymatic hydrolysis, and the saccharification rates of each pretreatment type were 4.33 times and 2.99% higher than CK, respectively. The enzymatic hydrolysis liquid of corn straw pretreated by Lac/HBT mainly contained xylose and glucose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The suitability of membrane cartridges for the removal of endotoxin from both distilled water and interferon preparations was examined. The endotoxin concentrations were reduced to 4.0 and 7.3 EU/ml, respectively, when about 4000 ml of distilled water with 20 and 28 EU/ml were passed through the deoxycholate and chitosan immobilized membrane cartridges. When 200 ml of interferon preparation with endotoxin concentration more than 80 EU/ml and pH 3.9 were applied to a deoxycholate immobilized membrane cartridge at a flow-rate of 9 ml/min, the endotoxin concentration was reduced to less than 10 EU/ml. However, if an interferon preparation of 450 ml, with more than 80 EU/ml of endotoxin and pH 3.9 was applied to the chitosan immobilized membrane cartridge at a flow-rate of 18 ml/min, the endotoxin concentration was reduced to less than 10 EU/ml. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Affinity chromatography is unique among separation methods as it is the only technique that permits the purification of proteins based on biological functions rather than individual physical or chemical properties. The high specificity of affinity chromatography is due to the strong interaction between the ligand and the proteins of interest. Membrane separation allows the processing of a large amount of sample in a relatively short time owing to its structure, which provides a system with rapid reaction kinetics. The integration of membrane and affinity chromatography provides a number of advantages over traditional affinity chromatography with porous-bead packed columns, especially with regard to time and recovery of activity. This review gives detailed descriptions of materials used as membrane substrates, preparation of basic membranes, coupling of affinity ligands to membrane supports, and categories of affinity membrane cartridges. It also summarizes the applications of cellulose/glycidyl methacrylate composite membranes for proteins separation developed in our laboratory. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mono- and bimetallic catalytic polymeric hollow-fiber reactors were established with catalytic polymeric cellulose acetate (CA) hollow fibers prepared by supporting the polymer-anchored mono- or bimetallic catalyst in/on the inner wall of the hollow fibers. The selective hydrogenation of cyclopentadiene to cyclopentene was efficiently carried out in the above catalytic polymeric hollow-fiber reactors, especially in the NaBH4 reduced bimetallic PVP-Pd-0.5Co/CA hollow-fiber reactor under mild conditions of 40 degrees C and 0.1 MPa. It was found that there was a remarkable synergic effect of palladium and cobalt reduced by NaBH4 in the bimetallic PVP-Pd-0.5Co/CA hollow-fiber reactor, which results in a 97.5% conversion of cyclopentadiene and a 98.4% selectivity for cyclopentene. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crude polysaccharide extracts were obtained from aqueous extracts of the microalgae Chlorella stigmatophora and Phaeodactylum tricornutum. The crude extracts were fractionated by ion-exchange chromatography on DEAE-cellulose columns. The molecular weights of the polysaccharides in each fraction were estimated by gel filtration on Sephacryl columns. The crude polysaccharide extracts of both microalgae showed anti-inflammatory activity in the carrageenan-induced paw edema test. In assays of effects on the delayed hyper-sensitivity response, and on phagocytic activity assayed in vivo and in vitro, the C. stigmatophora extract showed immunosuppressant effects, while the P. tricornutum extract showed immunostimulatory effects. Copyright © 2003 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-solids, low-viscosity, stable polyacrylamide (PAM) aqueous dispersions were prepared by dispersion polymerization of acrylamide in aqueous solution of ammonium sulfate (AS) using Poly (sodium acrylic acid) (PAANa) as the stabilizer, ammonium persulfate (APS) or 2,2'-Azobis (N,N'-dimethyleneisobutyramidine) dihydrochloride (VA-044) as the initiator. The molecular weight of the formed PAM, ranged from 710, 000 g/mol to 4,330,000 g/mol, was controlled by the addition of sodium formate as a conventional chain-transfer agent. The progress of a typical AM dispersion polymerization was monitored with aqueous size exclusion chromatography. The influences, of the AS concentration, the poly(sodium acrylic acid) concentration, the initiator type and concentration, the chain-transfer agent concentration and temperature Oil the monomer conversion, the dispersion viscosity, the PAM molecular weight and distribution, the particle size and morphology were systematically investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-solids, low-viscosity, stable poly(acrylamide-co-acrylic acid) aqueous latex dispersions were prepared by the dispersion polymerization of acrylamide (AM) and acrylic acid (AA) in an aqueous solution of ammonium sulfate (AS) medium using anionic polyelectrolytes as stabilizers. The anionic polyelectrolytes employed include poly(2-acrylamido-2-methylpropanesulfonic acid sodium) (PAMPSNa) homopolymer and random copolymers of 2-acrylamido-2-methylpropanesulfonic acid sodium (AMPSNa) with methacrylic acid sodium (MAANa), acrylic acid sodium (AANa) or acrylamide (AM). The influences of stabilizer's structure, composition, molecular weight and concentration, AA/AM molar feed ratio, total monomer, initiator and aqueous solution of AS concentration, and stirring speed on the monomer conversion, the particle size and distribution, the bulk viscosity and stability of the dispersions, and the intrinsic viscosity of the resulting copolymer were systematically investigated. Polydisperse spherical as well as ellipsoidal particles were formed in the system. The broad particle size distributions indicated that coalescence of the particles takes place to a greater extent.