828 resultados para Carbon steel electrodes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are promising for microsystems applications, yet few techniques effectively enable integration of CNTs with precise control of placement and alignment of the CNTs at sufficiently high densities necessary for compelling mechanical or electrical performance. This paper explores new methods for scalable integration of dense, horizontally aligned (HA) CNTs with patterned electrodes. Our technique involves the synthesis of vertically aligned (VA) CNTs directly on a conductive underlayer and subsequent mechanical transformation into HA-CNTs, thus making electrical contact between two electrodes. We compare elasto-capillary folding and mechanical rolling as methods for transforming VA-CNTs, which lead to distinctly different HA-CNT morphologies and potentially impact material and device properties. As an example application of this novel CNT morphology, we investigate fabrication of electrically addressable CNT-C60 hybrid thin films that we previously demonstrated as photodetectors. We synthesize these assemblies by crystallizing C60 from dispersion on HA-CNT thin-film scaffoldings. HA-CNTs fabricated by rolling result in relatively low packing density, so C 60 crystals embed inside the HA-CNT matrix during synthesis. On the other hand, C60 crystallization is restricted to near the surface of HA-CNT films made by the elasto-capillary process. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advent of nanotechnology has revolutionised our ability to engineer electrode interfaces. These are particularly attractive to measure biopotentials, and to study the nervous system. In this work, we demonstrate enhanced in vitro recording of neuronal activity using electrodes decorated with carbon nanosheets (CNSs). This material comprises of vertically aligned, free standing conductive sheets of only a few graphene layers with a high surfacearea- to-volume ratio, which makes them an interesting material for biomedical electrodes. Further, compared to carbon nanotubes, CNSs can be synthesised without the need for metallic catalysts like Ni, Co or Fe, thereby reducing potential cytotoxicity risks. Electrochemical measurements show a five times higher charge storage capacity, and an almost ten times higher double layer capacitance as compared to TiN. In vitro experiments were performed by culturing primary hippocampal neurons from mice on micropatterned electrodes. Neurophysiological recordings exhibited high signal-to-noise ratios of 6.4, which is a twofold improvement over standard TiN electrodes under the same conditions. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximately 40% of annual demand for steel worldwide is used to replace products that have failed. With this percentage set to rise, extending the lifespan of steel in products presents a significant opportunity to reduce demand and thus decrease carbon dioxide emissions from steel production. This article presents a new, simplified framework with which to analyse product failure. When applied to the products that dominate steel use, this framework reveals that they are often replaced because a component/sub-assembly becomes degraded, inferior, unsuitable or worthless. In light of this, four products, which are representative of high steel content products in general, are analysed at the component level, determining steel mass and cost profiles over the lifespan of each product. The results show that the majority of the steel components are underexploited - still functioning when the product is discarded; in particular, the potential lifespan of the steel-rich structure is typically much greater than its actual lifespan. Twelve case studies, in which product or component life has been increased, are then presented. The resulting evidence is used to tailor life-extension strategies to each reason for product failure and to identify the economic motivations for implementing these strategies. The results suggest that a product template in which the long-lived structure accounts for a relatively high share of costs while short-lived components can be easily replaced (offering profit to the producer and enhanced utility to owners) encourages product life extension. © 2013 The Author.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein we report on the transport characteristics of rapid pulsed vacuum-arc thermally annealed, individual and network multi-walled carbon nanotubes. Substantially reduced defect densities (by at least an order of magnitude), measured by micro-Raman spectroscopy, and were achieved by partial reconstruction of the bamboo-type defects during thermal pulsing compared with more traditional single-pulse thermal annealing. Rapid pulsed annealed processed networks and individual multi-walled nanotubes showed a consistent increase in conductivity (of over a factor of five at room temperature), attributed to the reduced number density of resistive axial interfaces and, in the case of network samples, the possible formation of structural bonds between crossed nanotubes. Compared to the highly defective as-grown nanotubes, the pulsed annealed samples exhibited reduced temperature sensitivity in their transport characteristics signifying the dominance of scattering events from structural defects. Transport measurements in the annealed multi-walled nanotubes deviated from linear Ohmic, typically metallic, behavior to an increasingly semiconducting-like behavior attributed to thermally induced axial strains. Rapid pulsed annealed networks had an estimated band gap of 11.26 meV (as-grown; 6.17 meV), and this observed band gap enhancement was inherently more pronounced for individual nanotubes compared with the networks most likely attributed to mechanical pinning effect of the probing electrodes which possibly amplifies the strain induced band gap. In all instances the estimated room temperature band gaps increased by a factor of two. The gating performance of back-gated thin-film transistor structures verified that the observed weak semiconductivity (p-type) inferred from the transport characteristic at room temperature. © 2014 Copyright Taylor & Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the growth of vertically-aligned nanotube forests, of up to 0.2 mm in height, on an 85:15 sp2:sp3 carbon support with Fe catalyst. This is achieved by purely-thermal chemical vapour deposition with the catalyst pretreated in inert environments. Pretreating the catalyst in a reducing atmosphere causes catalyst diffusion into the support and the growth of defective tubes. Other sp2:sp3 compositions, including graphite, tetrahedral amorphous carbon, and pure diamond, also lead to the growth of defective carbon morphologies. These results pave the way towards controlled growth of forests on carbon fibres. It could give rise to applications in enhanced fuel cell electrodes and better hierarchical carbon fibre-nanotube composites. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The possibility of enhancing the frequency performance of electrochemical capacitors by tailoring the nanostructure of the carbon electrode to increase electrolyte permeability is demonstrated. Highly porous, vertically oriented carbon electrodes which are in direct electrical contact with the metallic current collector are produced via MPECVD growth on metal foils. The resulting structure has a capacitance and frequency performance between that of an electrolytic capacitor and an electrochemical capacitor. Fully packaged devices are produced on Ni and Cu current collectors and performance compared to state-of-the-art electrochemical capacitors and electrolytic capacitors. The extension of capacitive behavior to the AC regime (100 Hz) opens up an avenue for a number of new applications where physical volume of the capacitor may be significantly reduced. © 2014 Pritesh Hiralal et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through floating catalyst chemical vapour deposition(CVD) method, well-aligned isolated single-walled carbon nanotubes (SWCNTs) and their bundles were deposited on the metal electrodes patterned on the SiO2/Si surface under ac electric fields at relatively low temperature(280 degrees C). It was indicated that SWCNTs were effectively aligned under ac electric fields after they had just grown in the furnace. The time for a SWCNT to be aligned in the electric field and the effect of gas flow were estimated. Polarized Raman scattering was performed to characterize the aligned structure of SWCNTs. This method would be very useful for the controlled fabrication and preparation of SWCNTs in practical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A glutamate biosensor based on the electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH), which was generated by the enzymatic reaction, was developed via employing a single-walled carbon nanotubes/thionine (Th-SWNTs) nanocomposite as a mediator and an enzyme immobilization matrix. The biosensor, which was fabricated by immobilizing glutamate dehydrogenase (GIDH) on the surface of Th-SWNTs, exhibited a rapid response (ca. 5 s), a low detection limit (0.1 mu M), a wide and useful linear range (0.5-400 mu M), high sensitivity (137.3 +/- 15.7) mu A mM(-1) cm(-2), higher biological affinity, as well as good stability and repeatability. In addition, the common interfering species, such as ascorbic acid, uric acid, and 4-acetamidophenol, did not cause any interference due to the use of a low operating potential (190 mV vs. NHE). The biosensor can be used to quantify the concentration of glutamate in the physiological level. The Th-SWNTs system represents a simple and effective approach to the integration of dehydrogenase and electrodes, which can provide analytical access to a large group of enzymes for wide range of bioelectrochemical applications including biosensors and biofuel cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adoption of a sintered stainless steel fiber felt was evaluated as gas diffusion backing in air-breathing direct methanol fuel cell (DMFC). By using a sintered stainless steel fiber felt as an anodic gas diffusion backing, the peak power density of an air-breathing DMFC is 24 mW cm(-2), which is better than that of common carbon paper. A 30-h-life test indicates that the degraded performance of the air-breathing DMFC is primarily due to the water flooding of the cathode. Twelve unit cells with each has 6 cm(2) of active area are connected in series to supply the power to a mobile phone assisted by a constant voltage diode. The maximum power density of 26 mW cm(-2) was achieved in the stack, which is higher than that in single cell. The results show that the sintered stainless steel felt is a promising solution to gas diffusion backing in the air-breathing DMFC, especially in the anodic side because of its high electronical conductivity and hydrophilicity. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It was reported for the first time that the electrocatalytic activity of the Carbon-supported Pd-Ir (Pd-Ir/C) catalyst with the suitable atomic ratio of Pd and Ir for the oxidation of formic acid in the direct formic acid fuel cell (DFAFC) is better than that of the Carbon-supported Pd (Pd/C) catalyst, although Ir has no electrocatalytic activity for the oxidation of formic acid. The potential of the anodic peak of formic acid at the Pd-Ir/C catalyst electrode with the atomic ratio of Pd and Ir = 5:1 is 50 mV more negative than that and the peak current density is 13% higher than that at the Pd/C catalyst electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multilayer film of laccase, poly-L-lysine (PLL) and multi-walled carbon nanotubes (MWNTs) were prepared by a layer-by-layer self-assembly technique. The results of the UV-vis spectroscopy and scanning electron microscopy studies demonstrated a uniform growth of the multilayer. The catalytic behavior of the modified electrode was investigated. The (MWNTs/PLL/laccase)(n) multilayer modified electrode catalyzed four-electron reduction of O-2 to water, without any mediator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly sensitive amperometric detection of dihydronicotinamide adenine dinucleotide (NADH) by using novel synthesized carbon nanofibers (CNFs) without addition of any mediator has been proposed. The CNFs were prepared by combination of electrospinning technique with thermal treatment method and were applied without any oxidation pretreatment to construct the electrochemical sensor. In amperometric detection of NADH, a linear range up to 11.45 mu M with a low detection limit of 20 nM was obtained with the CNF-modified carbon paste electrode (CNF-CPE).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-walled carbon nanohorn (SWCNH) paste electrode was used for amperometric determination of concentrated hydrogen peroxide, and was compared with other carbon electrodes. The calibration plots are linear from 0.5 to 100 mM at activated SWCNH paste electrode and edge plane graphite (EPG) electrode. In contrast, the calibration plots are linear only at concentrations lower than 45 mM at graphite paste electrode, multi-walled carbon nanotube paste electrode, and glassy carbon electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biosensing application of single-walled carbon nanohorns (SWCNHs) was demonstrated through fabrication of an amperometric glucose biosensor. The biosensor was constructed by encapsulating glucose oxidase in the Nafion-SWCNHs composite film. The cyclic voltammograms for glucose oxidase immobilized on the composite film displayed a pair of well-defined and nearly symmetric redox peaks with a formal potential of -0.453V. The biosensor had good electrocatalytic activity toward oxidation of glucose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A carbon-supported palladium catalyst modified by non-metal phosphorus(PdP/C) has been developed as an oxygen reduction catalyst for direct methanol fuel cells.The PdP/C catalyst was prepared by the sodium hypophosphite reduction method. The as-prepared Pd nanoparticles have a narrow size distribution with an average diameter of 2 nm. Energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) results indicate that P enters into the crystal lattice of Pd and forms an alloy.