982 resultados para CYLINDRICAL CONFIGURATION
Resumo:
We report on the experimental observation of vortex tangles in an atomic Bose-Einstein condensate (BEC) of (87)Rb atoms when an external oscillatory perturbation is introduced in the trap. The vortex tangle configuration is a signature of the presence of a turbulent regime in the cloud. We also show that this turbulent cloud suppresses the aspect ratio inversion typically observed in quantum degenerate bosonic gases during free expansion. Instead, the cloud expands keeping the ratio between their axis constant. Turbulence in atomic superfluids may constitute an alternative system to investigate decay mechanisms as well as to test fundamental theoretical aspects in this field.
Resumo:
Recently, we have found an additional spin-orbit (SO) interaction in quantum wells with two subbands [Bernardes , Phys. Rev. Lett. 99, 076603 (2007)]. This new SO term is nonzero even in symmetric geometries, as it arises from the intersubband coupling between confined states of distinct parities, and its strength is comparable to that of the ordinary Rashba. Starting from the 8x8 Kane model, here we present a detailed derivation of this new SO Hamiltonian and the corresponding SO coupling. In addition, within the self-consistent Hartree approximation, we calculate the strength of this new SO coupling for realistic symmetric modulation-doped wells with two subbands. We consider gated structures with either a constant areal electron density or a constant chemical potential. In the parameter range studied, both models give similar results. By considering the effects of an external applied bias, which breaks the structural inversion symmetry of the wells, we also calculate the strength of the resulting induced Rashba couplings within each subband. Interestingly, we find that for double wells the Rashba couplings for the first and second subbands interchange signs abruptly across the zero bias, while the intersubband SO coupling exhibits a resonant behavior near this symmetric configuration. For completeness we also determine the strength of the Dresselhaus couplings and find them essentially constant as function of the applied bias.
Resumo:
The title compound, C13H12N4O, crystallizes with two independent molecules in the asymmetric unit. The compound crystallizes as the ZE isomer, where Z and E refer to the configuration around the C=N and N-C bonds, respectively, with an N-H center dot center dot center dot N-py (py is pyridine) intramolecular hydrogen bond. The dihedral angles between the least-squares planes through the semicarbazone group and the pyridyl ring are 22.70 (9) and 27.26 (9)degrees for the two molecules. There are intermolecular N-H center dot center dot center dot O hydrogen bonds.
Resumo:
We investigate the performance of a variant of Axelrod's model for dissemination of culture-the Adaptive Culture Heuristic (ACH)-on solving an NP-Complete optimization problem, namely, the classification of binary input patterns of size F by a Boolean Binary Perceptron. In this heuristic, N agents, characterized by binary strings of length F which represent possible solutions to the optimization problem, are fixed at the sites of a square lattice and interact with their nearest neighbors only. The interactions are such that the agents' strings (or cultures) become more similar to the low-cost strings of their neighbors resulting in the dissemination of these strings across the lattice. Eventually the dynamics freezes into a homogeneous absorbing configuration in which all agents exhibit identical solutions to the optimization problem. We find through extensive simulations that the probability of finding the optimal solution is a function of the reduced variable F/N(1/4) so that the number of agents must increase with the fourth power of the problem size, N proportional to F(4), to guarantee a fixed probability of success. In this case, we find that the relaxation time to reach an absorbing configuration scales with F(6) which can be interpreted as the overall computational cost of the ACH to find an optimal set of weights for a Boolean binary perceptron, given a fixed probability of success.
Resumo:
A recently developed thermal lens spectrometry configuration has been used to study CdSe/ZnS core-shell quantum dots (QDs) suspended in toluene and tetrahydrofuran (THF) solvents. The special features of this configuration make it very attractive to measure fluorescence quantum yield (eta) excitation spectrum since it simplifies the measurement procedure and consequently improve the accuracy. Furthermore, the precision reached is much higher than in conventional photoluminescence (PL) technique. Two methods, called reference sample and multiwavelength have been applied to determine eta, varying excitation wavelength in the UV-visible region (between 335-543 nm). The eta and PL spectra are practically independent of the excitation wavelength. For CdSe/ZnS QDs suspended in toluene we have obtained eta=76 +/- 2%. In addition, the aging effect on eta and PL has been studied over a 200 h period for QDs suspended in THF. (C) 2010 American Institute of Physics. [doi:10.1063/1.3343517]
Resumo:
The parallel mutation-selection evolutionary dynamics, in which mutation and replication are independent events, is solved exactly in the case that the Malthusian fitnesses associated to the genomes are described by the random energy model (REM) and by a ferromagnetic version of the REM. The solution method uses the mapping of the evolutionary dynamics into a quantum Ising chain in a transverse field and the Suzuki-Trotter formalism to calculate the transition probabilities between configurations at different times. We find that in the case of the REM landscape the dynamics can exhibit three distinct regimes: pure diffusion or stasis for short times, depending on the fitness of the initial configuration, and a spin-glass regime for large times. The dynamic transition between these dynamical regimes is marked by discontinuities in the mean-fitness as well as in the overlap with the initial reference sequence. The relaxation to equilibrium is described by an inverse time decay. In the ferromagnetic REM, we find in addition to these three regimes, a ferromagnetic regime where the overlap and the mean-fitness are frozen. In this case, the system relaxes to equilibrium in a finite time. The relevance of our results to information processing aspects of evolution is discussed.
Resumo:
A recently developed dual-beam configuration that optimizes the thermal lens technique has been used to obtain the absorption spectrum of pure water from 350 to 528 nm. Our results indicate the minimum linear absorption coefficient smaller than 2 X 10(-5) cm(-1) between 360 and 400 nm. This value is lower than previous literature data, and it is blueshifted. Absorption coefficients as small as 2 X 10(-7) cm(-1) can be measured for water using 1 W of excitation power. A detection limit of similar to 6 X 10(-9) cm(-1) (P=1 W) for CCl(4) was estimated, which represents, to the best of our knowledge, the highest sensitivity obtained in small absorption measurements in liquids. (C) 2009 Optical Society of America
Resumo:
We apply thermal-lens (TL) spectrometry to measure the angular dependence of the TL effect on colquiriite single crystals. The experiments were performed with LiSrAlF(6) and LiSrGaF(6) using a two-beam mode-mismatched configuration. The results show that it is possible to minimize the TL effect by selecting the appropriate crystal orientation. Our data also show that the anisotropy of the linear thermal expansion coefficient drives the amplitude of the TL effect, including the inversion from focusing to defocusing as the crystal orientation angle tends to the c-axis direction. The results may be useful for those working to develop a high-power laser using LiSrAlF(6)(:Cr) and LiSrGaF(6)(:Cr) single crystals, allowing for optimization of the designed laser cavity. (C) 2008 Optical Society of America.
Resumo:
The knowledge of the atomic structure of clusters composed by few atoms is a basic prerequisite to obtain insights into the mechanisms that determine their chemical and physical properties as a function of diameter, shape, surface termination, as well as to understand the mechanism of bulk formation. Due to the wide use of metal systems in our modern life, the accurate determination of the properties of 3d, 4d, and 5d metal clusters poses a huge problem for nanoscience. In this work, we report a density functional theory study of the atomic structure, binding energies, effective coordination numbers, average bond lengths, and magnetic properties of the 3d, 4d, and 5d metal (30 elements) clusters containing 13 atoms, M(13). First, a set of lowest-energy local minimum structures (as supported by vibrational analysis) were obtained by combining high-temperature first- principles molecular-dynamics simulation, structure crossover, and the selection of five well-known M(13) structures. Several new lower energy configurations were identified, e. g., Pd(13), W(13), Pt(13), etc., and previous known structures were confirmed by our calculations. Furthermore, the following trends were identified: (i) compact icosahedral-like forms at the beginning of each metal series, more opened structures such as hexagonal bilayerlike and double simple-cubic layers at the middle of each metal series, and structures with an increasing effective coordination number occur for large d states occupation. (ii) For Au(13), we found that spin-orbit coupling favors the three-dimensional (3D) structures, i.e., a 3D structure is about 0.10 eV lower in energy than the lowest energy known two-dimensional configuration. (iii) The magnetic exchange interactions play an important role for particular systems such as Fe, Cr, and Mn. (iv) The analysis of the binding energy and average bond lengths show a paraboliclike shape as a function of the occupation of the d states and hence, most of the properties can be explained by the chemistry picture of occupation of the bonding and antibonding states.
Resumo:
The origin of the unique geometry for nitric oxide (NO) adsorption on Pd(111) and Pt(111) surfaces as well as the effect of temperature were studied by density functional theory calculations and ab initio molecular dynamics at finite temperature. We found that at low coverage, the adsorption geometry is determined by electronic interactions, depending sensitively on the adsorption sites and coverages, and the effect of temperature on geometries is significant. At coverage of 0.25 monolayer (ML), adsorbed NO at hollow sites prefer an upright configuration, while NO adsorbed at top sites prefer a tilting configuration. With increase in the coverage up to 0.50 ML, the enhanced steric repulsion lead to the tilting of hollow NO. We found that the tilting was enhanced by the thermal effects. At coverage of 0.75 ML with p(2 x 2)-3NO(fcc+hcp+top) structure, we found that there was no preferential orientation for tilted top NO. The interplay of the orbital hybridization, thermal effects, steric repulsion, and their effects on the adsorption geometries were highlighted at the end.
Resumo:
Transparent conducting oxides (TCO) are widely used in technological applications ranging from photovoltaics to thin-film transparent field-effect transistors. In this work we report a first-principles investigation, based on density-functional theory, of the atomic and electronic properties of Ga(2)O(3)(ZnO)(6) (GZO(6)), which is a promising candidate to be used as host oxide for wide band gap TCO applications. We identify a low-energy configuration for the coherent distribution of the Ga and Zn atoms in the cation positions within the experimentally reported orthorhombic GZO(6) structure. Four Ga atoms are located in four-fold sites, while the remaining 12 Ga atoms in the unit cell form four shared Ga agglomerates (a motif of four atoms). The Zn atoms are distributed in the remaining cation sites with effective coordination numbers from 3.90 to 4.50. Furthermore, we identify the natural formation of twin-boundaries in GZO(6), which can explain the zigzag modulations observed experimentally by high-resolution transmission electron microscopy in GZO(n) (n=9). Due to the intrinsic twin-boundary formation, polarity inversion in the ZnO tetrahedrons is present which is facilitated by the formation of the Ga agglomerates. Our analysis shows that the formation of fourfold Ga sites and Ga agglomerates are stabilized by the electronic octet rule, while the distribution of Ga atoms and the formation of the twin-boundary help alleviate excess strain. Finally we identify that the electronic properties of GZO(6) are essentially determined by the electronic properties of ZnO, i.e., there are slight changes in the band gap and optical absorption properties.
Resumo:
The fast and reversible phase transition mechanism between crystalline and amorphous phases of Ge(2)Sb(2)Te(5) has been in debate for several years. Through employing first-principles density functional theory calculations, we identify a direct structural link between the metastable crystalline and amorphous phases. The phase transition is driven by the displacement of Ge atoms along the rocksalt [111] direction from stable octahedron to high energy unstable tetrahedron sites close to the intrinsic vacancy regions, which generates a high energy intermediate phase between metastable and amorphous phases. Due to the instability of Ge at the tetrahedron sites, the Ge atoms naturally shift away from those sites, giving rise to the formation of local-ordered fourfold motifs and the long-range structural disorder. Intrinsic vacancies, which originate from Sb(2)Te(3), lower the energy barrier for Ge displacements, and hence, their distribution plays an important role in the phase transition. The high energy intermediate configuration can be obtained experimentally by applying an intense laser beam, which overcomes the thermodynamic barrier from the octahedron to tetrahedron sites. The high figure of merit of Ge(2)Sb(2)Te(5) is achieved from the optimal combination of intrinsic vacancies provided by Sb(2)Te(3) and the instability of the tetrahedron sites provided by GeTe.
Resumo:
In the title compound, C(16)H(12)N(2)O(2)S, the carbonylthiourea group forms dihedral angles of 75.4 (1) and 13.1 (2)degrees, respectively, with the naphthalene ring system and furan ring. The molecule adopts a trans-cis configuration with respect to the positions of the furoyl and naphthyl groups relative to the S atom across the thiourea C-N bonds. This geometry is stabilized by an N-H center dot center dot center dot center dot O intramolecular hydrogen bond. In the crystal structure, molecules are linked by N-H center dot center dot center dot S hydrogen bonds, forming centrosymmetric dimers which are interlinked through C-H center dot center dot center dot pi interactions.
Resumo:
First-principles density-functional theory studies have reported open structures based on the formation of double simple-cubic (DSC) arrangements for Ru(13), Rh(13), Os(13), and Ir(13), which can be considered an unexpected result as those elements crystallize in compact bulk structures such as the face-centered cubic and hexagonal close-packed lattices. In this work, we investigated with the projected augmented wave method the dependence of the lowest-energy structure on the local and semilocal exchange-correlation (xc) energy functionals employed in density-functional theory. We found that the local-density approximation (LDA) and generalized-gradient formulations with different treatment of the electronic inhomogeneities (PBE, PBEsol, and AM05) confirm the DSC configuration as the lowest-energy structure for the studied TM(13) clusters. A good agreement in the relative total energies are obtained even for structures with small energy differences, e. g., 0.10 eV. The employed xc functionals yield the same total magnetic moment for a given structure, i.e., the differences in the bond lengths do not affect the moments, which can be attributed to the atomic character of those clusters. Thus, at least for those systems, the differences among the LDA, PBE, PBEsol, and AM05 functionals are not large enough to yield qualitatively different results. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3577999]
Resumo:
We study the free-fall of a quantum particle in the context of noncommutative quantum mechanics (NCQM). Assuming noncommutativity of the canonical type between the coordinates of a two-dimensional configuration space, we consider a neutral particle trapped in a gravitational well and exactly solve the energy eigenvalue problem. By resorting to experimental data from the GRANIT experiment, in which the first energy levels of freely falling quantum ultracold neutrons were determined, we impose an upper-bound on the noncommutativity parameter. We also investigate the time of flight of a quantum particle moving in a uniform gravitational field in NCQM. This is related to the weak equivalence principle. As we consider stationary, energy eigenstates, i.e., delocalized states, the time of flight must be measured by a quantum clock, suitably coupled to the particle. By considering the clock as a small perturbation, we solve the (stationary) scattering problem associated and show that the time of flight is equal to the classical result, when the measurement is made far from the turning point. This result is interpreted as an extension of the equivalence principle to the realm of NCQM. (C) 2010 American Institute of Physics. [doi:10.1063/1.3466812]