976 resultados para CHEMICAL-REDUCTION
Resumo:
This study aimed to evaluate the chemical composition of Baccharis dracunculifolia essential oil and the water soluble oil obtained by steam distillation that were analyzed by GC and GUMS. in the first hour of distillation, B. dracunculifolia aerial parts yielded 0.08% oil and in the second hour, 0.27%. The oil recovered from the distillate water yielded 0.18 g/L in the first hour and 0.44 g/L in the second hour of distillation. The main volatile compounds identified in the distillate water were aromatic compounds and sesquiterpene alcohols.
Resumo:
Papulaspora immersa H. H. HOTS ON was isolated from roots and leaves of Smallanthus sonchifolius (POEPP. and ENDL.) H. ROB. (Asteraceae), traditionally known as Yacon. The fungus was cultured in rice, and, from the AcOEt fraction, 14 compounds were isolated. Among them, (22E,24R)-8,14-epoxyergosta-4,22-diene-3,6-dione (4), 2,3-epoxy-1,2,3,4-tetrahydronaphthalene-c-1,c-4,8-triol (10), and the chromone papulasporin (13) were new secondary metabolites. The spectral data of the known natural products were compared with the literature data, and their structures were established as the (24R)stigmast 4 en 3 one (1), 24-methylenecycloartan-3 beta-ol (2), (22E,24R)-ergosta-4,6,8(14),22-tetraen-3-one (3), (-)-(3R,4R)-4-hydroxymellein (5), (-)-(3R)-5-hydroxymellein (6), 6,8-dihydroxy-3-methylisocoumarin (7), (-)-(4S)-4,8-dihydroxy-alpha-tetralone (8), naphthalene-1,8-diol (9), 6,7,8-trihydroxy-3-methylisocoumarin (11), 7-hydroxy-2,5-dimethylchromone (12), and tyrosol (14). Compound 4 showed the highest cytotoxic activity against the human tumor cell lines MDA-MB435 (melanoma), HCT-8 (colon), SF295 (glioblastoma), and HL-60 (promyelocytic leukemia), with IC(50) values of 3.3, 14.7, 5.0 and 1.6 mu m, respectively. Strong synergistic effects were also observed with compound 5 and some of the isolated steroidal compounds.
Resumo:
The reduction of parasitism tissue upon treatment with two lignano lactones, namely (-)- cubebin (CUB) and (-)-hinokinin (HNK), was evaluated in the chronic phase of Chagas` disease by quantifying the enzyme beta-galactosidase expressed by the CL B5 clone strain of Trypanosoma cruzi. Tissue karyometry was also performed. Treatment with the assessed lignans led to a larger reduction in parasitism tissue in all evaluated organs, compared with benznidazole (BZN). Oral treatment with CUB or HNK was more effective. Karyometry results demonstrated that the infected control animals had increased nuclear area compared with uninfected controls, indicating cellular hypertrophy. Results also revealed that use of CUB or HNK was able to significantly prevent this increase, and a slight decrease in the nuclear area was observed, compared with mice treated with BZN. Taken together, these data demonstrate that CUB and HNK could be considered as potential compounds for the development of new drugs for treatment of Chagas` disease.
Resumo:
Chemical investigation of the EtOAc fraction (EF) obtained from the ethanolic extract of Zanthoxylum naranjillo (Rutaceae) leaves (EE) by preparative HPLC resulted in the isolation of protocatechuic acid (1), gallic acid (2), p-hydroxybenzoic acid (3), and 5-O-caffeoylshikimic acid (4). This is the first time that the presence of compounds 1-4 in Z. naranjillo has been reported. Compounds 1-4, the EE, and EF were tested in vitro against Schistosoma mansoni adult worms. The results showed that the S. mansoni daily egg production decreased by 29.8%, 13.5% 28.4%, 17.7%, 16.3%, and 6.4%, respectively. Compounds 1 and 3 were also able to separate adult worm pairs into male and female. This activity may be correlated with the reduction in egg production, since 1 and 3 showed better inhibitory properties compared with 2 and 4.
Resumo:
Baccharis dracunculifolia DC (Asteraceae), a native plant from Brazil, commonly known as `Alecrim-do-campo` is widely used in folk medicine to treat inflammation, hepatic disorders and stomach ulcers, and it is the most important botanical source of Southeastern Brazilian propolis, known as green propolis. Its essential oil is composed of non-oxygenated and oxygenated terpenes. In this work, the effects of the essential oil obtained from the aerial parts of R dracunculifolia on gastric ulcers were evaluated. The antiulcer assays were undertaken using the following protocols in rats: nonsteroidal antiinflammatory drug (NSAID)-induced ulcer, ethanol-induced ulcer, stress-induced ulcer, and determination of gastric secretion using ligated pylorus. The treatment in the doses of 50, 250 and 500 mg/kg of R dracunculifolia essential oil significantly diminished the lesion index, the total lesion area and the percentage of lesions in comparison with both positive and negative control groups. With regard to the model of gastric secretion a reduction of gastric juice volume and total acidity was observed, as well as an increase in the gastric pH. No sign of toxicity was observed in the acute toxicity study. Considering the results, it is suggested that the essential oil of B. dracunculifolia could probably be a good therapeutic agent for the development of new phytotherapeutic medicine for the treatment of gastric ulcer. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Baccharin (3-prenyl-4-(dihydrocinnamoyloxy)cinnamic acid) is an important chemical compound isolated from the aerial parts of Baccharis dracunculifolia DC (Asteraceae), a native plant of South America, and the most important plant source of Brazilian green propolis. The present study was designed to investigate the ability of baccharin to modulate the genotoxic effects induced by doxorubicin and methyl methanesulphonate in male Swiss mice using the micronucleus and comet assays, respectively. The different doses of baccharin [0.12, 0.24 and 0.48 mg/kg body-weight (b.w.)] were administered simultaneously to doxorubicin (micronucleus test; 15 mg/kg b.w.) and to methyl methanesulphonate (comet assay; 40 mg/kg b.w.). The results showed a significant decrease in the frequency of micronucleated polychromatic erythrocytes in animals treated with baccharin and doxorubicin compared to animals that received only doxorubicin. This reduction ranged from 39.8% to 50.7% in the micronucleus test. The extent of DNA damage in liver cells was significantly lower in animals treated with different concentrations of baccharin combined with methyl methanesulphonate in comparison with the damage observed for animals treated only with methyl methanesulphonate. These differences resulted in a significant reduction in the extent of DNA damage, which ranged from 47.8% to 60.6%.
Resumo:
Despite the necessity to differentiate chemical species of mercury in clinical specimens, there area limited number of methods for this purpose. Then, this paper describes a simple method for the determination of methylmercury and inorganic mercury in blood by using liquid chromatography with inductively coupled mass spectrometry (LC-ICP-MS) and a fast sample preparation procedure. Prior to analysis, blood (250 mu L) is accurately weighed into 15-mL conical tubes. Then, an extractant solution containing mercaptoethanol, L-cysteine and HCI was added to the samples following sonication for 15 min. Quantitative mercury extraction was achieved with the proposed procedure. Separation of mercury species was accomplished in less than 5 min on a C18 reverse-phase column with a mobile phase containing 0.05% (v/v) mercaptoethanol, 0.4% (m/v) L-cysteine, 0.06 mol L(-1) ammonium acetate and 5% (v/v) methanol. The method detection limits were found to be 0.25 mu g L(-1) and 0.1 mu Lg L(-1) for inorganic mercury and methylmercury, respectively. Method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). The proposed method was also applied to the speciation of mercury in blood samples collected from fish-eating communities and from rats exposed to thimerosal. With the proposed method there is a considerable reduction of the time of sample preparation prior to speciation of Hg by LC-ICP-MS. Finally, after the application of the proposed method, we demonstrated an interesting in vivo ethylmercury conversion to inorganic mercury. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The bovine dairy cattle demand diets of high nutritional value being essential to know chemical composition of feed supplied to cows to achieve high levels of quality, safety and productivity of milk. Different roughages and concentrates from Minas Gerais and Rio Grande do Sul states, Brazil, were analyzed by instrumental neutron activation analysis (INAA) and inductively coupled plasma mass spectrometry (ICP-MS). Concentrate and roughage samples were differentiated by mass fractions of As, Ba, Mg, P, Rb and Sr. Samples of concentrate from both origins were differentiated by mass fractions of As, Cd, Co, Cr, Cs, Ni and Rb.
Resumo:
Toluene and verapamil are subject to extensive oxidative metabolism mediated by CYP enzymes, and their interaction can be stereoselective. In the present study we investigated the influence of toluene inhalation on the enantioselective kinetic disposition of verapamil and its metabolite, norverapamil, in rats. Male Wistar rats (n = 6 per group) received a single dose of racemic verapamil (10 mg/kg) orally at the fifth day of nose-only toluene or air (control group) inhalation for 6 h/day (25, 50, and 100 ppm). Serial blood samples were collected from the tail up to 6 h after verapamil administration. The plasma concentrations of verapamil and norverapamil enantiomers were analyzed by LC-MS/MS by using a Chiralpak AD column. Toluene inhalation did not influence the kinetic disposition of verapamil or norverapamil enantiomers (p > 0.05, Kruskal-Wallis test) in rats. The pharmacokinetics of verapamil was enantioselective in the control group, with a higher plasma proportion of the S-verapamil (AUC 250.8 versus 120.4 ng.h.mL(-1); p <= 0.05, Wilcoxon test) and S-norverapamil (AUC 72.3 versus 52.3 ng.h.mL(-1); p <= 0.05, Wilcoxon test). Nose-only exposure to toluene at 25, 50, or 100 ppm resulted in a lack of enantioselectivity for both verapamil and norverapamil. The study demonstrates the importance of the application of enantioselective methods in studies on the interaction between solvents and chiral drugs.
Resumo:
Aiming at international competitiveness of the Brazilian dairy sector, new governmental policies were released to improve quality and safety of bovine milk. In this context, it is important to quantify essential and toxic chemical elements. Here, the composition of milk samples taken at 32 dairy farms in Minas Gerais State was assessed by instrumental neutron activation analysis (INAA) and inductively coupled plasma mass spectrometry (ICP-MS), besides the evaluation of usual quality parameters. Significant differences were found for Ba, K, Na and fat content amongst dairy farms with diverse quality levels established on basis of somatic cell and total bacterial count.
Resumo:
Crude extracts of a callus culture (two culture media) and adult plants (two collections) from Alternanthera tenella Colla (Amaranthaceae) were evaluated for their antibacterial and antifungal activity, in order to investigate the maintenance of antimicrobial activity of the extracts obtained from plants in vivo and in vitro. The antibacterial and antifungal activity was determined against thirty strains of microorganisms including Gram-positive and Gram-negative bacteria, yeasts and dermatophytes. Ethanolic and hexanic extracts of adult plants collected during the same period of the years 1997 and 2002 [Ribeirao Preto (SP), collections 1 and 2] and obtained from plant cell callus culture in two different hormonal media (AtT43 and AtT11) inhibited the growth of bacteria, yeasts and dermatophytes with inhibition halos between 6 and 20 mm. For the crude extracts of adult plants bioassay-guided fractionation, purification, and isolation were performed by chromatographic methods, and the structures of the isolated compounds were established by analysis of chemical and spectral evidences (UV, IR, NMR and ES-MS). Steroids, saponins and flavonoids (aglycones and C-glycosides) were isolated. The minimum inhibitory concentration (MIC) of the isolated compounds varied from 50 to 500 mu g/mL.
Resumo:
The treatment of textile effluents by the conventional method based on activated sludge followed by a chlorination step is not usually an effective method to remove azo dyes, and can generate products more mutagenic than the untreated dyes. The present work evaluated the efficiency of conventional chlorination to remove the genotoxicity/mutagenicity of the azo dyes Disperse Red 1, Disperse Orange 1, and Disperse Red 13 from aqueous solutions. The comet and micronucleus assays with HepG2 cells and the Salmonella mutagenicity assay were used. The degradation of the dye molecules after the same treatment was also evaluated, using ultraviolet and visible absorption spectrum measurements (UV-vis), high performance liquid chromatography coupled to a diode-array detector (HPLC-DAD), and total organic carbon removal (TOC) analysis. The comet assay showed that the three dyes studied induced damage in the DNA of the HepG2 cells in a dose-dependent manner. After chlorination, these dyes remained genotoxic, although with a lower damage index (DI). The micronucleus test showed that the mutagenic activity of the dyes investigated was completely removed by chlorination, under the conditions tested. The Salmonella assay showed that chlorination reduced the mutagenicity of all three dyes in strain YG1041, but increased the mutagenicity of Disperse Red 1 and Disperse Orange 1 in strain TA98. With respect to chemical analysis, all the solutions showed rapid discoloration and a reduction in the absorbance bands characteristic of the chromophore group of each dye. However, the TOC was not completely removed, showing that chlorination of these dyes is not efficient in mineralizing them. It was concluded that conventional chlorination should be used with caution for the treatment of aqueous samples contaminated with azo dyes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Time-averaged conformations of (+/-)-1-[3,4-(methylenedioxy)phenyl]-2-methylaminopropane hydrochloride (MDMA, ""ecstasy"") in D(2)O, and of its free base and trifluoroacetate in CDCl(3), were deduced from their (1)H NMR spectra and used to calculate their conformer distribution. Their rotational potential energy surface (PES) was calculated at the RHF/6-31G(d,p), 133LYP/6-31G(d,p), B3LYP/cc-pVDZ and AM1 levels. Solvent effects were evaluated using the polarizable continuum model. The NMR and theoretical studies showed that, in the free base, the N-methyl group and the ring are preferentially trans. This preference is stronger in the salts and corresponds to the X-ray structure of the hydrochloride. However, the energy barriers separating these forms are very low. The X-ray diffraction crystal structures of the anhydrous salt and its monohydrate differed mainly in the trans or cis relationship of the N-methyl group to the a-methyl, although these two forms interconvert freely in solution. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Stalker (AIAA Paper 87-0403) has suggested that, by ejecting molecules directly upstream from the entire face of a satellite, it is possible to reduce the drag on a satellite in low-Earth orbit and hence maintain orbit with a total fuel mass (for forward ejection and conventional reaction rockets) less than the typical mass requirements of conventional rockets. An analytical analysis is presented here, as well as Monte Carlo simulations. These indicate that to reduce the overall drag on the satellite significantly, collisions between the freestream and ejected molecules must occur at least two satellite diameters upstream. This can be achieved if the molecules are ejected far upstream from the satellite’s surface through a sting that projects forward from the satellite. Using some estimates of what would be feasible sting arrangements, we find that the drag on the satellite can be reduced to such an extent that the satellite’s orbit can be maintained with a total fuel mass of less than 60% of that required for reaction rockets alone. Upstream ejection is effective in reducing the drag for freestream Knudsen numbers less than approximately 250, but not otherwise.
Resumo:
The Equilibrium Flux Method [1] is a kinetic theory based finite volume method for calculating the flow of a compressible ideal gas. It is shown here that, in effect, the method solves the Euler equations with added pseudo-dissipative terms and that it is a natural upwinding scheme. The method can be easily modified so that the flow of a chemically reacting gas mixture can be calculated. Results from the method for a one-dimensional non-equilibrium reacting flow are shown to agree well with a conventional continuum solution. Results are also presented for the calculation of a plane two-dimensional flow, at hypersonic speed, of a dissociating gas around a blunt-nosed body.