914 resultados para CELLULAR IMMUNE RESPONSE


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The efficacious delivery of antigens to antigen-presenting cells (APCs), in particular, to dendritic cells (DCs), and their subsequent activation remains a significant challenge in the development of effective vaccines. This study highlights the potential of dissolving microneedle (MN) arrays laden with nanoencapsulated antigen to increase vaccine immunogenicity by targeting antigen specifically to contiguous DC networks within the skin. Following in situ uptake, skin-resident DCs were able to deliver antigen-encapsulated poly-d,l-lactide-co-glycolide (PGLA) nanoparticles to cutaneous draining lymph nodes where they subsequently induced significant expansion of antigen-specific T cells. Moreover, we show that antigen-encapsulated nanoparticle vaccination via microneedles generated robust antigen-specific cellular immune responses in mice. This approach provided complete protection in vivo against both the development of antigen-expressing B16 melanoma tumors and a murine model of para-influenza, through the activation of antigen-specific cytotoxic CD8(+) T cells that resulted in efficient clearance of tumors and virus, respectively. In addition, we show promising findings that nanoencapsulation facilitates antigen retention into skin layers and provides antigen stability in microneedles. Therefore, the use of biodegradable polymeric nanoparticles for selective targeting of antigen to skin DC subsets through dissolvable MNs provides a promising technology for improved vaccination efficacy, compliance, and coverage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The potential of a microparticulate vaccine delivery system in eliciting a specific mucosal antibody response in the respiratory tract of mice was evaluated. Two vaccine candidate peptides representing epitopes from the G attachment and F fusion antigens from bovine respiratory syncytial virus (BRSV) were encapsulated into poly(dl- lactide co-glycolide) biodegradable microparticles. The encapsulation process did not denature the entrapped peptides as verified by detection of peptide-specific antibodies in mucosal secretions by ELISA using peptide as antigen. Following intranasal immunisation, the encapsulated peptides induced stronger upper and lower respiratory tract specific-IgA responses, respectively, than the soluble peptide forms. Moreover, a strong peptide-specific cell-mediated immune response was measured in splenocytes in vitro from the mice inoculated with the encapsulated peptides compared to their soluble form alone indicating that migration of primed T cells had taken place from the site of mucosal stimulation in the upper respiratory tract to the spleen. These results act as a foundation for vaccine efficacy studies in large animal BRSV challenge models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bacillus anthracis secretes exotoxins which act through several mechanisms including those that can subvert adaptive immunity with respect both to antigen presenting cell and T cell function. The combination of Protective Antigen (PA) and Lethal Factor (LF) forming Lethal Toxin (LT), acts within host cells to down-regulate the mitogen activated protein kinase (MAPK) signaling cascade. Until recently the MAPK kinases were the only known substrate for LT; over the past few years it has become evident that LT also cleaves Nlrp1, leading to inflammasome activation and macrophage death. The predicted downstream consequences of subverting these important cellular pathways are impaired antigen presentation and adaptive immunity. In contrast to this, recent work has indicated that robust memory T cell responses to B. anthracis antigens can be identified following natural anthrax infection. We discuss how LT affects the adaptive immune response and specifically the identification of B. anthracis epitopes that are both immunogenic and protective with the potential for inclusion in protein sub-unit based vaccines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/µm on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately following irradiation in a dose-dependent manner. The analysis of repair capability showed that the cells irradiated with 1 and 2 Gy almost completely recovered from the damage, but not, however, 3 Gy treated cells in which DNA damage was not recovered. In addition, the results indicate the importance of the use of an appropriate control in radiobiological in vitro analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bovine respiratory syncytial virus (BRSV) is the principal aetiological agent of the bovine respiratory disease complex. A BRSV subunit vaccine candidate consisting of two synthetic peptides representing putative protective epitopes on BRSV surface glycoproteins in soluble form or encapsulated in poly(lactide-co-glycolide) (PLG) microparticles were prepared. Calves (10 weeks old) with diminishing levels of BRSV-specific maternal antibody were intranasally administered a single dose of the different peptide formulations. Peptide-specific local immune responses (nasal secretion IgA), but not systemic humoral (serum IgG) or cellular responses (serum IFN-γ), were generated by all forms of peptide. There was a significant reduction in occurrence of respiratory disease in the animals inoculated with all peptide formulations compared to animals given PBS alone. Furthermore no adverse effects were observed in any of the animals post vaccination. These results suggest that intranasal immunisation with the peptide subunit vaccine does induce an as yet unidentified protective immune response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A fully functioning immune system is essential in order to maintain good health. However, the immune system deteriorates with advancing age, and this contributes to increased susceptibility to infection, autoimmunity, and cancer in the older population. Progress has been made in identifying age-related defects in the adaptive immune system. In contrast, relatively little research has been carried out on the impact of ageing on the innate immune response. This area requires further research as the innate immune system plays a crucial role in protection against infection and represents a first line of defence. Macrophages are central effector cells of the innate immune system and have many diverse functions. As a result, age-related impairments in macrophage function are likely to have important consequences for the health of the older population. It has been reported that ageing in macrophages impacts on many processes including toll-like receptor signalling, polarisation, phagocytosis, and wound repair. A detailed understanding of the impact of ageing on macrophages is required in order to develop therapeutics that will boost immune responses in the older population.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The bacterial plant pathogen Pseudomonas syringae causes disease in a wide range of plants. The associated decrease in crop yields results in economic losses and threatens global food security. Competition exists between the plant immune system and the pathogen, the basic principles of which can be applied to animal infection pathways. P. syringae uses a type III secretion system (T3SS) to deliver virulence factors into the plant that promote survival of the bacterium. The P. syringae T3SS is a product of the hypersensitive response and pathogenicity (hrp) and hypersensitive response and conserved (hrc) gene cluster, which is strictly controlled by the codependent enhancer-binding proteins HrpR and HrpS. Through a combination of bacterial gene regulation and phenotypic studies, plant infection assays, and plant hormone quantifications, we now report that Chp8 (i) is embedded in the Hrp regulon and expressed in response to plant signals and HrpRS, (ii) is a functional diguanylate cyclase, (iii) decreases the expression of the major pathogen-associated molecular pattern (PAMP) flagellin and increases extracellular polysaccharides (EPS), and (iv) impacts the salicylic acid/jasmonic acid hormonal immune response and disease progression. We propose that Chp8 expression dampens PAMP-triggered immunity during early plant infection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

How much should an individual invest in immunity as it grows older? Immunity is costly and its value is likely to change across an organism's lifespan. A limited number of studies have focused on how personal immune investment changes with age in insects, but we do not know how social immunity, immune responses that protect kin, changes across lifespan, or how resources are divided between these two arms of the immune response. In this study, both personal and social immune functions are considered in the burying beetle, Nicrophorus vespilloides. We show that personal immune function declines (phenoloxidase levels) or is maintained (defensin expression) across lifespan in nonbreeding beetles but is maintained (phenoloxidase levels) or even upregulated (defensin expression) in breeding individuals. In contrast, social immunity increases in breeding burying beetles up to middle age, before decreasing in old age. Social immunity is not affected by a wounding challenge across lifespan, whereas personal immunity, through PO, is upregulated following wounding to a similar extent across lifespan. Personal immune function may be prioritized in younger individuals in order to ensure survival until reproductive maturity. If not breeding, this may then drop off in later life as state declines. As burying beetles are ephemeral breeders, breeding opportunities in later life may be rare. When allowed to breed, beetles may therefore invest heavily in "staying alive" in order to complete what could potentially be their final reproductive opportunity. As parental care is important for the survival and growth of offspring in this genus, staying alive to provide care behaviors will clearly have fitness payoffs. This study shows that all immune traits do not senesce at the same rate. In fact, the patterns observed depend upon the immune traits measured and the breeding status of the individual.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called 'cryptic' or 'subdominant' epitopes. We analyzed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISpot assays we characterized epitopes that elicited a response following immunization with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, as a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 transgenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were influenced by the specific HLA alleles presenting the peptide, and imply that construction of future epitope string vaccines which are immunogenic across a wide range of HLA alleles could benefit from a combination of both cryptic and immunodominant anthrax epitopes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Colorectal Cancer (CRC) Subtyping Consortium (CRCSC) recently published four consensus molecular subtypes (CMS’s) representing the underlying biology in CRC. The Microsatellite Instable (MSI) immune group, CMS1, has a favorable prognosis in early stage disease, but paradoxically has the worst prognosis following relapse, suggesting the presence of factors enabling neoplastic cells to circumvent this immune response. To identify the genes influencing subsequent poor prognosis in CMS1, we analyzed this subtype, centered on risk of relapse.
In a cohort of early stage colon cancer (n=460), we examined, in silico, changes in gene expression within the CMS1 subtype and demonstrated for the first time the favorable prognostic value of chemokine-like factor (CKLF) gene expression in the adjuvant disease setting [HR=0.18, CI=0.04-0.89]. In addition, using transcription profiles originating from cell sorted CRC tumors, we delineated the source of CKLF transcription within the colorectal tumor microenvironment to the leukocyte component of these tumors. Further to this, we confirmed that CKLF gene expression is confined to distinct immune subsets in whole blood samples and primary cell lines, highlighting CKLF as a potential immune cell-derived factor promoting tumor immune-surveillance of nascent neoplastic cells, particularly in CMS1 tumors. Building on the recently reported CRCSC data, we provide compelling evidence that leukocyte-infiltrate derived CKLF expression is a candidate biomarker of favorable prognosis, specifically in MSI-immune stage II/III disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação de mestrado, Aquacultura e Pescas, Faculdade de Ciências e Tecnologia, Uniersidade do Algarve, 2015

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2015

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tese de Doutoramento, Ciências do Mar, especialidade de Biologia Marinha, 18 de Dezembro de 2015, Universidade dos Açores.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bladder cancer is a common urologic cancer and the majority has origin in the urothelium. Patients with intermediate and high risk of recurrence/progression bladder cancer are treated with intravesical instillation with Bacillus Calmette-Guérin, however, approximately 30% of patients do not respond to treatment. At the moment, there are no accepted biomarkers do predict treatment outcome and an early identification of patients better served by alternative therapeutics. The treatment initiates a cascade of cytokines responsible by recruiting macrophages to the tumor site that have been shown to influence treatment outcome. Effective BCG therapy needs precise activation of the Th1 immune pathway associated with M1 polarized macrophages. However, tumor-associated macrophages (TAMs) often assume an immunoregulatory M2 phenotype, either immunosuppressive or angiogenic, that interfere in different ways with the BCG induced antitumor immune response. The M2 macrophage is influenced by different microenvironments in the stroma and the tumor. In particular, the degree of hypoxia in the tumors is responsible by the recruitment and differentiation of macrophages into the M2 angiogenic phenotype, suggested to be associated with the response to treatment. Nevertheless, neither the macrophage phenotypes present nor the influence of localization and hypoxia have been addressed in previous studies. Therefore, this work devoted to study the influence of TAMs, in particular of the M2 phenotype taking into account their localization (stroma or tumor) and the degree of hypoxia in the tumor (low or high) in BCG treatment outcome. The study included 99 bladder cancer patients treated with BCG. Tumors resected prior to treatment were evaluated using immunohistochemistry for CD68 and CD163 antigens, which identify a lineage macrophage marker and a M2-polarized specific cell surface receptor, respectively. Tumor hypoxia was evaluated based on HIF-1α expression. As a main finding it was observed that a high predominance of CD163+ macrophage counts in the stroma of tumors under low hypoxia was associated with BCG immunotherapy failure, possibly due to its immunosuppressive phenotype. This study further reinforces the importance the tumor microenvironment in the modulation of BCG responses.