824 resultados para C65 - Miscellaneous Mathematical Tools
Resumo:
This study compares the impact of quality management tools on the performance of organisations utilising the ISO 9001:2000 standard as a basis for a quality-management system band those utilising the EFQM model for this purpose. A survey is conducted among 107 experienced and independent quality-management assessors. The study finds that organisations with qualitymanagement systems based on the ISO 9001:2000 standard tend to use general-purpose qualitative tools, and that these do have a relatively positive impact on their general performance. In contrast, organisations adopting the EFQM model tend to use more specialised quantitative tools, which produce significant improvements in specific aspects of their performance. The findings of the study will enable organisations to choose the most effective quality-improvement tools for their particular quality strategy
Resumo:
Ordered weighted averaging (OWA) operators and their extensions are powerful tools used in numerous decision-making problems. This class of operator belongs to a more general family of aggregation operators, understood as discrete Choquet integrals. Aggregation operators are usually characterized by indicators. In this article four indicators usually associated with the OWA operator are extended to discrete Choquet integrals: namely, the degree of balance, the divergence, the variance indicator and Renyi entropies. All of these indicators are considered from a local and a global perspective. Linearity of indicators for linear combinations of capacities is investigated and, to illustrate the application of results, indicators of the probabilistic ordered weighted averaging -POWA- operator are derived. Finally, an example is provided to show the application to a specific context.
Resumo:
Ever since the inception of economics over two hundred years ago, the tools at the discipline's disposal have grown more and more more sophisticated. This book provides a historical introduction to the methodology of economics through the eyes of economists. The story begins with John Stuart Mill's seminal essay from 1836 on the definition and method of political economy, which is then followed by an examination of how the actual practices of economists changed over time to such an extent that they not only altered their methods of enquiry, but also their self-perception as economists. Beginning as intellectuals and journalists operating to a large extent in the public sphere, they then transformed into experts who developed their tools of research increasingly behind the scenes. No longer did they try to influence policy agendas through public discourse; rather they targeted policymakers directly and with instruments that showed them as independent and objective policy advisors, the tools of the trade changing all the while. In order to shed light on this evolution of economic methodology, this book takes carefully selected snapshots from the discipline's history. It tracks the process of development through the nineteenth and twentieth centuries, analysing the growth of empirical and mathematical modelling. It also looks at the emergence of the experiment in economics, in addition to the similarities and differences between modelling and experimentation. This book will be relevant reading for students and academics in the fields of economic methodology, history of economics, and history and philosophy of the social sciences.
Resumo:
La tomodensitométrie (TDM) est une technique d'imagerie pour laquelle l'intérêt n'a cessé de croitre depuis son apparition au début des années 70. De nos jours, l'utilisation de cette technique est devenue incontournable, grâce entre autres à sa capacité à produire des images diagnostiques de haute qualité. Toutefois, et en dépit d'un bénéfice indiscutable sur la prise en charge des patients, l'augmentation importante du nombre d'examens TDM pratiqués soulève des questions sur l'effet potentiellement dangereux des rayonnements ionisants sur la population. Parmi ces effets néfastes, l'induction de cancers liés à l'exposition aux rayonnements ionisants reste l'un des risques majeurs. Afin que le rapport bénéfice-risques reste favorable au patient il est donc nécessaire de s'assurer que la dose délivrée permette de formuler le bon diagnostic tout en évitant d'avoir recours à des images dont la qualité est inutilement élevée. Ce processus d'optimisation, qui est une préoccupation importante pour les patients adultes, doit même devenir une priorité lorsque l'on examine des enfants ou des adolescents, en particulier lors d'études de suivi requérant plusieurs examens tout au long de leur vie. Enfants et jeunes adultes sont en effet beaucoup plus sensibles aux radiations du fait de leur métabolisme plus rapide que celui des adultes. De plus, les probabilités des évènements auxquels ils s'exposent sont également plus grandes du fait de leur plus longue espérance de vie. L'introduction des algorithmes de reconstruction itératifs, conçus pour réduire l'exposition des patients, est certainement l'une des plus grandes avancées en TDM, mais elle s'accompagne de certaines difficultés en ce qui concerne l'évaluation de la qualité des images produites. Le but de ce travail est de mettre en place une stratégie pour investiguer le potentiel des algorithmes itératifs vis-à-vis de la réduction de dose sans pour autant compromettre la qualité du diagnostic. La difficulté de cette tâche réside principalement dans le fait de disposer d'une méthode visant à évaluer la qualité d'image de façon pertinente d'un point de vue clinique. La première étape a consisté à caractériser la qualité d'image lors d'examen musculo-squelettique. Ce travail a été réalisé en étroite collaboration avec des radiologues pour s'assurer un choix pertinent de critères de qualité d'image. Une attention particulière a été portée au bruit et à la résolution des images reconstruites à l'aide d'algorithmes itératifs. L'analyse de ces paramètres a permis aux radiologues d'adapter leurs protocoles grâce à une possible estimation de la perte de qualité d'image liée à la réduction de dose. Notre travail nous a également permis d'investiguer la diminution de la détectabilité à bas contraste associée à une diminution de la dose ; difficulté majeure lorsque l'on pratique un examen dans la région abdominale. Sachant que des alternatives à la façon standard de caractériser la qualité d'image (métriques de l'espace Fourier) devaient être utilisées, nous nous sommes appuyés sur l'utilisation de modèles d'observateurs mathématiques. Nos paramètres expérimentaux ont ensuite permis de déterminer le type de modèle à utiliser. Les modèles idéaux ont été utilisés pour caractériser la qualité d'image lorsque des paramètres purement physiques concernant la détectabilité du signal devaient être estimés alors que les modèles anthropomorphes ont été utilisés dans des contextes cliniques où les résultats devaient être comparés à ceux d'observateurs humain, tirant profit des propriétés de ce type de modèles. Cette étude a confirmé que l'utilisation de modèles d'observateurs permettait d'évaluer la qualité d'image en utilisant une approche basée sur la tâche à effectuer, permettant ainsi d'établir un lien entre les physiciens médicaux et les radiologues. Nous avons également montré que les reconstructions itératives ont le potentiel de réduire la dose sans altérer la qualité du diagnostic. Parmi les différentes reconstructions itératives, celles de type « model-based » sont celles qui offrent le plus grand potentiel d'optimisation, puisque les images produites grâce à cette modalité conduisent à un diagnostic exact même lors d'acquisitions à très basse dose. Ce travail a également permis de clarifier le rôle du physicien médical en TDM: Les métriques standards restent utiles pour évaluer la conformité d'un appareil aux requis légaux, mais l'utilisation de modèles d'observateurs est inévitable pour optimiser les protocoles d'imagerie. -- Computed tomography (CT) is an imaging technique in which interest has been quickly growing since it began to be used in the 1970s. Today, it has become an extensively used modality because of its ability to produce accurate diagnostic images. However, even if a direct benefit to patient healthcare is attributed to CT, the dramatic increase in the number of CT examinations performed has raised concerns about the potential negative effects of ionising radiation on the population. Among those negative effects, one of the major risks remaining is the development of cancers associated with exposure to diagnostic X-ray procedures. In order to ensure that the benefits-risk ratio still remains in favour of the patient, it is necessary to make sure that the delivered dose leads to the proper diagnosis without producing unnecessarily high-quality images. This optimisation scheme is already an important concern for adult patients, but it must become an even greater priority when examinations are performed on children or young adults, in particular with follow-up studies which require several CT procedures over the patient's life. Indeed, children and young adults are more sensitive to radiation due to their faster metabolism. In addition, harmful consequences have a higher probability to occur because of a younger patient's longer life expectancy. The recent introduction of iterative reconstruction algorithms, which were designed to substantially reduce dose, is certainly a major achievement in CT evolution, but it has also created difficulties in the quality assessment of the images produced using those algorithms. The goal of the present work was to propose a strategy to investigate the potential of iterative reconstructions to reduce dose without compromising the ability to answer the diagnostic questions. The major difficulty entails disposing a clinically relevant way to estimate image quality. To ensure the choice of pertinent image quality criteria this work was continuously performed in close collaboration with radiologists. The work began by tackling the way to characterise image quality when dealing with musculo-skeletal examinations. We focused, in particular, on image noise and spatial resolution behaviours when iterative image reconstruction was used. The analyses of the physical parameters allowed radiologists to adapt their image acquisition and reconstruction protocols while knowing what loss of image quality to expect. This work also dealt with the loss of low-contrast detectability associated with dose reduction, something which is a major concern when dealing with patient dose reduction in abdominal investigations. Knowing that alternative ways had to be used to assess image quality rather than classical Fourier-space metrics, we focused on the use of mathematical model observers. Our experimental parameters determined the type of model to use. Ideal model observers were applied to characterise image quality when purely objective results about the signal detectability were researched, whereas anthropomorphic model observers were used in a more clinical context, when the results had to be compared with the eye of a radiologist thus taking advantage of their incorporation of human visual system elements. This work confirmed that the use of model observers makes it possible to assess image quality using a task-based approach, which, in turn, establishes a bridge between medical physicists and radiologists. It also demonstrated that statistical iterative reconstructions have the potential to reduce the delivered dose without impairing the quality of the diagnosis. Among the different types of iterative reconstructions, model-based ones offer the greatest potential, since images produced using this modality can still lead to an accurate diagnosis even when acquired at very low dose. This work has clarified the role of medical physicists when dealing with CT imaging. The use of the standard metrics used in the field of CT imaging remains quite important when dealing with the assessment of unit compliance to legal requirements, but the use of a model observer is the way to go when dealing with the optimisation of the imaging protocols.
Resumo:
Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand.Here we present a community-driven curation effort, supported by ELIXIR-the European infrastructure for biological information-that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners.As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools.
Resumo:
Postprint (published version)
Resumo:
Peer-reviewed
Resumo:
The modern technological ability to handle large amounts of information confronts the chemist with the necessity to re-evaluate the statistical tools he routinely uses. Multivariate statistics furnishes theoretical bases for analyzing systems involving large numbers of variables. The mathematical calculations required for these systems are no longer an obstacle due to the existence of statistical packages that furnish multivariate analysis options. Here basic concepts of two multivariate statistical techniques, principal component and hierarchical cluster analysis that have received broad acceptance for treating chemical data are discussed.
Resumo:
The proposed transdisciplinary field of ‘complexics’ would bring together allcontemporary efforts in any specific disciplines or by any researchersspecifically devoted to constructing tools, procedures, models and conceptsintended for transversal application that are aimed at understanding andexplaining the most interwoven and dynamic phenomena of reality. Our aimneeds to be, as Morin says, not “to reduce complexity to simplicity, [but] totranslate complexity into theory”.New tools for the conception, apprehension and treatment of the data ofexperience will need to be devised to complement existing ones and toenable us to make headway toward practices that better fit complexictheories. New mathematical and computational contributions have alreadycontinued to grow in number, thanks primarily to scholars in statisticalphysics and computer science, who are now taking an interest in social andeconomic phenomena.Certainly, these methodological innovations put into question and againmake us take note of the excessive separation between the training receivedby researchers in the ‘sciences’ and in the ‘arts’. Closer collaborationbetween these two subsets would, in all likelihood, be much moreenergising and creative than their current mutual distance. Humancomplexics must be seen as multi-methodological, insofar as necessarycombining quantitative-computation methodologies and more qualitativemethodologies aimed at understanding the mental and emotional world ofpeople.In the final analysis, however, models always have a narrative runningbehind them that reflects the attempts of a human being to understand theworld, and models are always interpreted on that basis.
Resumo:
The proposed transdisciplinary field of ‘complexics’ would bring together allcontemporary efforts in any specific disciplines or by any researchersspecifically devoted to constructing tools, procedures, models and conceptsintended for transversal application that are aimed at understanding andexplaining the most interwoven and dynamic phenomena of reality. Our aimneeds to be, as Morin says, not “to reduce complexity to simplicity, [but] totranslate complexity into theory”.New tools for the conception, apprehension and treatment of the data ofexperience will need to be devised to complement existing ones and toenable us to make headway toward practices that better fit complexictheories. New mathematical and computational contributions have alreadycontinued to grow in number, thanks primarily to scholars in statisticalphysics and computer science, who are now taking an interest in social andeconomic phenomena.Certainly, these methodological innovations put into question and againmake us take note of the excessive separation between the training receivedby researchers in the ‘sciences’ and in the ‘arts’. Closer collaborationbetween these two subsets would, in all likelihood, be much moreenergising and creative than their current mutual distance. Humancomplexics must be seen as multi-methodological, insofar as necessarycombining quantitative-computation methodologies and more qualitativemethodologies aimed at understanding the mental and emotional world ofpeople.In the final analysis, however, models always have a narrative runningbehind them that reflects the attempts of a human being to understand theworld, and models are always interpreted on that basis.
Resumo:
Herein, we report the formation of organized mesoporous silica materials prepared from a novel nonionic gemini surfactant, myristoyl-end capped Jeffamine, synthesized from a polyoxyalkyleneamine (ED900). The behavior of the modified Jeffamine in water was first investigated. A direct micellar phase (L1) and a hexagonal (H1) liquid crystal were found. The structure of the micelles was investigated from the SAXS and the analysis by Generalized Indirect Fourier Transformation (GIFT), which show that the particles are globular of coreshell type. The myristoyl chains, located at the ends of the amphiphile molecule are assembled to form the core of the micelles and, as a consequence, the molecules are folded over on themselves. Mesoporous materials were then synthesized from the self-assembly mechanism. The recovered materials were characterized by SAXS measurements, nitrogen adsorptiondesorption analysis, transmission and scanning electron microscopy. The results clearly evidence that by modifying the synthesis parameters, such as the surfactant/silica precursor molar ratio and the hydrothermal conditions, one can control the size and the nanostructuring of the resulting material. It was observed that, the lower the temperature of the hydrothermal treatment, the better the mesopore ordering.
Resumo:
This article is the result of an ongoing research into a variety of features of Spanish local government. It aims, in particular, at providing a profile of the tools implemented by local authorities to improve local democracy in Catalonia. The main hypothesis of the work is that, even though the Spanish local model is constrained by a shared and unique set of legal regulations, local institutions in Catalonia have developed their own model of local participation. And the range of instruments like these is still now increasing. More specifically, the scope of this research is twofold. On the one hand, different types of instruments for public deliberation in the Catalan local administration system are identified and presented, based on the place they take in the policy cycle. On the other hand, we focus on policy domains and the quality of the decision-making processes. Researching the stability of the participation tools or whether local democracy prefers more 'ad hoc' processes allows us to analyze the boundaries/limits of local democracy in Catalonia. The main idea underlying this paper is that, despite the existence of a single legal model regulating municipalities in Catalonia, local authorities tend to use their legally granted selfmanagement capacities to design their own instruments which end up presenting perceivable distinct features, stressing democracy in different policy domains, and in diverse policy cycles. Therefore, this paper is intended to identify such models and to provide factors (variables) so that an explanatory model can be built.
Resumo:
This paper sets out to identify the initial positions of the different decisionmakers who intervene in a group decision making process with a reducednumber of actors, and to establish possible consensus paths between theseactors. As a methodological support, it employs one of the most widely-knownmulticriteria decision techniques, namely, the Analytic Hierarchy Process(AHP). Assuming that the judgements elicited by the decision makers follow theso-called multiplicative model (Crawford and Williams, 1985; Altuzarra et al.,1997; Laininen and Hämäläinen, 2003) with log-normal errors and unknownvariance, a Bayesian approach is used in the estimation of the relative prioritiesof the alternatives being compared. These priorities, estimated by way of themedian of the posterior distribution and normalised in a distributive manner(priorities add up to one), are a clear example of compositional data that will beused in the search for consensus between the actors involved in the resolution ofthe problem through the use of Multidimensional Scaling tools