897 resultados para Blood flow and vascular resistance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-dimensional (2D) hopper flow of disks has been extensively studied. Here, we investigate hopper flow of ellipses with aspect ratio $\alpha = 2$, and we contrast that behavior to the flow of disks. We use a quasi-2D hopper containing photoelastic particles to obtain stress/force information. We simultaneously measure the particle motion and stress. We determine several properties, including discharge rates, jamming probabilities, and the number of particles in clogging arches. For both particle types, the size of the opening, $D$, relative to the size of particles, $\ell$ is an important dimensionless measure. The orientation of the ellipses plays an important role in flow rheology and clogging. The alignment of contacting ellipses enhances the probability of forming stable arches. This study offers insight for applications involving the flow of granular materials consisting of ellipsoidal shapes, and possibly other non-spherical shapes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NgBR is a transmembrane protein identified as a Nogo-B-interacting protein and recently has been shown to be a subunit required for cis-prenyltransferase (cisPTase) activity. To investigate the integrated role of NgBR in vascular development, we have characterized endothelial-specific NgBR knockout embryos. Here, we show that endothelial-specific NgBR knockout results in embryonic lethality due to vascular development defects in yolk sac and embryo proper. Loss of NgBR in endothelial cells reduces proliferation and promotes apoptosis of the cells largely through defects in the glycosylation of key endothelial proteins including VEGFR2, VE-cadherin, and CD31, and defective glycosylation can be rescued by treatment with the end product of cisPTase activity, dolichol phosphate. Moreover, NgBR functions in endothelial cells during embryogenesis are Nogo-B independent. These data uniquely show the importance of NgBR and protein glycosylation during vascular development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An MHD flow is considered which is relevant to horizontal Bridgman technique for crystal growth from a melt. In the unidirectional parallel flow approximation an analytical solution is found accounting for the finite rectangular cross section of the channel in the case of a vertical magnetic field. Numerical pseudo-spectral solutions are used in the cases of arbitrary magnetic field and gravity vector orientations. The vertical magnetic field (parallel to the gravity) is found to be he most effective to damp the flow, however, complicated flow profiles with "overvelocities" in the comers are typical in the case of a finite cross-section channel. The temperature distribution is shown to be dependent on the flow profile. The linear stability of the flow is investigated by use of the Chebyshev pseudospectral method. For the case of an infinite width channel the transversal rolls instability is investigated, and for the finite cross-section channel the longitudinal rolls instability is considered. The critical Gr number values are computed in the dependence of the Ha number and the wave number or the aspect ratio in the case of finite section.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study a problem of scheduling and batching on two machines in a flow-shop and open-shop environment. Each machine processes operations in batches, and the processing time of a batch is the sum of the processing times of the operations in that batch. A setup time, which depends only on the machine, is required before a batch is processed on a machine, and all jobs in a batch remain at the machine until the entire batch is processed. The aim is to make batching and sequencing decisions, which specify a partition of the jobs into batches on each machine, and a processing order of the batches on each machine, respectively, so that the makespan is minimized. The flow-shop problem is shown to be strongly NP-hard. We demonstrate that there is an optimal solution with the same batches on the two machines; we refer to these as consistent batches. A heuristic is developed that selects the best schedule among several with one, two, or three consistent batches, and is shown to have a worst-case performance ratio of 4/3. For the open-shop, we show that the problem is NP-hard in the ordinary sense. By proving the existence of an optimal solution with one, two or three consistent batches, a close relationship is established with the problem of scheduling two or three identical parallel machines to minimize the makespan. This allows a pseudo-polynomial algorithm to be derived, and various heuristic methods to be suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presented numerical modelling for the magnetic levitation involves coupling of the electromagnetic field, liquid shape change, fluid velocities and the temperature field at every time step during the simulation in time evolution. Combination of the AC and DC magnetic fields can be used to achieve high temperature, stable levitation conditions. The oscillation frequency spectra are analysed for droplets levitated in AC and DC magnetic fields at various combinations. An electrically poorly conducting, diamagnetic droplet (e.g. water) can be stably levitated using the dia- and para-magnetic properties of the sample material in a high intensity, gradient DC field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational Fluid Dynamics (CFD) is gradually becoming a powerful and almost essential tool for the design, development and optimization of engineering applications. However the mathematical modelling of the erratic turbulent motion remains the key issue when tackling such flow phenomena. The reliability of CFD analysis depends heavily on the turbulence model employed together with the wall functions implemented. In order to resolve the abrupt changes in the turbulent energy and other parameters situated at near wall regions a particularly fine mesh is necessary which inevitably increases the computer storage and run-time requirements. Turbulence modelling can be considered to be one of the three key elements in CFD. Precise mathematical theories have evolved for the other two key elements, grid generation and algorithm development. The principal objective of turbulence modelling is to enhance computational procedures of efficient accuracy to reproduce the main structures of three dimensional fluid flows. The flow within an electronic system can be characterized as being in a transitional state due to the low velocities and relatively small dimensions encountered. This paper presents simulated CFD results for an investigation into the predictive capability of turbulence models when considering both fluid flow and heat transfer phenomena. Also a new two-layer hybrid kε / kl turbulence model for electronic application areas will be presented which holds the advantages of being cheap in terms of the computational mesh required and is also economical with regards to run-time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pseudo-spectral solution method offers a flexible and fast alternative to the more usual finite element/volume/difference methods, particularly when the long-time transient behaviour of a system is of interest. Since the exact solution is obtained at the grid collocation points superior accuracy can be achieved on modest grid resolution. Furthermore, the grid can be freely adapted with time and in space, to particular flow conditions or geometric variations. This is especially advantageous where strongly coupled, time-dependent, multi-physics solutions are investigated. Examples include metallurgical applications involving the interaction of electromagnetic fields and conducting liquids with a free sutface. The electromagnetic field then determines the instantaneous liquid volume shape and the liquid shape affects in turn the electromagnetic field. In AC applications a thin "skin effect" region results on the free surface that dominates grid requirements. Infinitesimally thin boundary cells can be introduced using Chebyshev polynomial expansions without detriment to the numerical accuracy. This paper presents a general methodology of the pseudo-spectral approach and outlines the solution procedures used. Several instructive example applications are given: the aluminium electrolysis MHD problem, induction melting and stirring and the dynamics of magnetically levitated droplets in AC and DC fields. Comparisons to available analytical solutions and to experimental measurements will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat is extracted away from an electronic package by convection, conduction, and/or radiation. The amount of heat extracted by forced convection using air is highly dependent on the characteristics of the airflow around the package which includes its velocity and direction. Turbulence in the air is also important and is required to be modeled accurately in thermal design codes that use computational fluid dynamics (CFD). During air cooling the flow can be classified as laminar, transitional, or turbulent. In electronics systems, the flow around the packages is usually in the transition region, which lies between laminar and turbulent flow. This requires a low-Reynolds number numerical model to fully capture the impact of turbulence on the fluid flow calculations. This paper provides comparisons between a number of turbulence models with experimental data. These models included the distance from the nearest wall and the local velocity (LVEL), Wolfshtein, Norris and Reynolds, k-ε, k-ω, shear-stress transport (SST), and kε/kl models. Results show that in terms of the fluid flow calculations most of the models capture the difficult wake recirculation region behind the package reasonably well, although for packages whose heights cause a high degree of recirculation behind the package the SST model appears to struggle. The paper also demonstrates the sensitivity of the models to changes in the mesh density; this study is aimed specifically at thermal design engineers as mesh independent simulations are rarely conducted in an industrial environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pseudo-spectral solution method offers a flexible and fast alternative to the more usual finite element and volume methods, particularly when the long-time transient behaviour of a system is of interest. The exact solution is obtained at grid collocation points leading to superior accuracy on modest grids. Furthermore, the grid can be freely adapted in time and space to particular flow conditions or geometric variations, especially useful where strongly coupled, time-dependent, multi-physics solutions are investigated. Examples include metallurgical applications involving the interaction of electromagnetic fields and conducting liquids with a free surface. The electromagnetic field determines the instantaneous liquid volume shape, which then affects the electromagnetic field. A general methodology of the pseudo-spectral approach is presented, with several instructive example applications: the aluminium electrolysis MHD problem, induction melting in a cold crucible and the dynamics of AC/DC magnetically levitated droplets. Finally, comparisons with available analytical solutions and to experimental measurements are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electromagnetic Levitation (EML) is a valuable method for measuring the thermo-physical properties of metals - surface tensions, viscosity, thermal/electrical conductivity, specific heat, hemispherical emissivity, etc. – beyond their melting temperature. In EML, a small amount of the test specimen is melted by Joule heating in a suspended AC coil. Once in liquid state, a small perturbation causes the liquid envelope to oscillate and the frequency of oscillation is then used to compute its surface tension by the well know Rayleigh formula. Similarly, the rate at which the oscillation is dampened relates to the viscosity. To measure thermal conductivity, a sinusoidally varying laser source may be used to heat the polar axis of the droplet and the temperature response measured at the polar opposite – the resulting phase shift yields thermal conductivity. All these theoretical methods assume that convective effects due to flow within the droplet are negligible compared to conduction, and similarly that the flow conditions are laminar; a situation that can only be realised under microgravity conditions. Hence the EML experiment is the method favoured for Spacelab experiments (viz. TEMPUS). Under terrestrial conditions, the full gravity force has to be countered by a much larger induced magnetic field. The magnetic field generates strong flow within the droplet, which for droplets of practical size becomes irrotational and turbulent. At the same time the droplet oscillation envelope is no longer ellipsoidal. Both these conditions invalidate simple theoretical models and prevent widespread EML use in terrestrial laboratories. The authors have shown in earlier publications that it is possible to suppress most of the turbulent convection generated in the droplet skin layer, through use of a static magnetic field. Using a pseudo-spectral discretisation method it is possible compute very accurately the dynamic variation in the suspended fluid envelope and simultaneously compute the time-varying electromagnetic, flow and thermal fields. The use of a DC field as a dampening agent was also demonstrated in cold crucible melting, where suppression of turbulence was achieved in a much larger liquid metal volume and led to increased superheat in the melt and reduction of heat losses to the water-cooled walls. In this paper, the authors describe the pseudo-spectral technique as applied to EML to compute the combined effects of AC and DC fields, accounting for all the flow-induced forces acting on the liquid volume (Lorentz, Maragoni, surface tension, gravity) and show example simulations.