986 resultados para Bcr-abl Mutants
Resumo:
Genistein is an isoflavenoid that is abundant in soy beans. Genistein has been reported to have a wide range of biological activities and to play a role in the diminished incidence of breast cancer in populations that consume a soy-rich diet. Genistein was originally identified as an inhibitor of tyrosine kinases; however, it also inhibits topoisomerase II by stabilizing the covalent DNA cleavage complex, an event predicted to cause DNA damage. The topoisomerase II inhibitor etoposide acts in a similar manner. Here we show that genistein induces the up-regulation of p53 protein, phosphorylation of p53 at serine 15, activation of the sequence-specific DNA binding properties of p53, and phosphorylation of the hCds1/Chk2 protein kinase at threonine 68. Phosphorylation and activation of p53 and phosphorylation of Chk2 were not observed in ATM-deficient cells. In contrast, the topoisomerase II inhibitor etoposide induced phosphorylation of p53 and Chk2 in ATM-positive and ATM-deficient cells. In addition, genistein-treated ATM-deficient cells were significantly more susceptible to genistein-induced killing than were ATM-positive cells. Together our data suggest that ATM is required for activation of a DNA damage-induced pathway that activates p53 and Chk2 in response to genistein.
Resumo:
Mutations in the ATM gene lead to the genetic disorder ataxia-telangiectasia. ATM encodes a protein kinase that is mainly distributed in the nucleus of proliferating cells. Recent studies reveal that ATM regulates multiple cell cycle checkpoints by phosphorylating different targets at different stages of the cell cycle. ATM also functions in the regulation of DNA repair and apoptosis, suggesting that it is a central regulator of responses to DNA double-strand breaks.
Resumo:
Urethral epithelial cells are invaded by Neisseria gonorrhoeae during gonococcal infection in men. To understand further the mechanisms of gonococcal entry into host cells, we used the primary human urethral epithelial cells (PHUECs) tissue culture system recently developed by our laboratory. These studies showed that human asialoglycoprotein receptor (ASGP-R) and the terminal lactosamine of lacto-N-neotetraose-expressing gonococcal lipooligosaccharide (LOS) play an important role in invasion of PHUECs. Microscopy studies showed that ASGP-R traffics to the cell surface after gonococcal challenge. Co-localization of ASGP-R with gonococci was observed. As ASGP-R-mediated endocytosis is clathrin dependent, clathrin localization in PHUECs was examined after infection. Infected PHUECs showed increased clathrin recruitment and co-localization of clathrin and gonococci. Preincubating PHUECs in 0.3 M sucrose or monodansylcadaverine (MDC), which both inhibit clathrin-coated pit formation, resulted in decreased invasion. N. gonorrhoeae strain 1291 produces a single LOS glycoform that terminates with Gal(beta1-4)Glc-Nac(beta1-3)Gal(beta1-4)Glc (lacto-N-neotetraose). Invasion assays showed that strain 1291 invades significantly more than four isogenic mutants expressing truncated LOS. Sialylation of strain 1291 LOS inhibited invasion significantly. Preincubation of PHUECs in asialofetuin (ASF), an ASGP-R ligand, significantly reduced invasion. A dose-response reduction in invasion was observed in PHUECs preincubated with increasing concentrations of NaOH-deacylated 1291 LOS. These studies indicated that an interaction between lacto-N-neotetraose-terminal LOS and ASGP-R allows gonococcal entry into PHUECs.
Resumo:
The fifth increased branching ramosus (rms) mutant, rms5, from pea (Pisum sativum), is described here for phenotype and grafting responses with four other rms mutants. Xylem sap zeatin riboside concentration and shoot auxin levels in rms5 plants have also been compared with rms1 and wild type (WT). Rms1 and Rms5 appear to act closely at the biochemical or cellular level to control branching, because branching was inhibited in reciprocal epicotyl grafts between rms5 or rms1 and WT plants, but not inhibited in reciprocal grafts between rms5 and rmsl seedlings. The weakly transgressive or slightly additive phenotype of the rmsl rms5 double mutant provides further evidence for this interaction. Like rms1, rms5 rootstocks have reduced xylem sap cytokinin concentrations, and rms5 shoots do not appear deficient in indole-3-acetic acid or 4-chloroindole-3-acetic acid. Rms1 and Rms5 are similar in their interaction with other Rms genes. Reciprocal grafting studies with rmsl, rms2, and rms5, together with the fact that root xylem sap cytokinin concentrations are reduced in rms1 and rms5 and elevated in rms2 plants, indicates that Rms1 and Rms5 may control a different pathway than that controlled by Rms2. Our studies indicate that Rms1 and Rms5 may regulate a novel graft-transmissible signal involved in the control of branching.
Resumo:
We constructed a BAC library of the model legume Lotus japonicus with a 6-to 7-fold genome coverage. We used vector PCLD04541, which allows direct plant transformation by BACs. The average insert size is 94 kb. Clones were stable in Escherichia coli and Agrobacterium tumefaciens.
Resumo:
The cyclic C5a receptor antagonist, phenylalanine [L-ornithine-proline-D-cyclohexylalanine-tryptophan-arginine] (F-[OPchaWR]), has similar to 1000-fold less affinity for the C5a receptor (C5aR) on murine polymorphonuclear leukocytes than on human. Analysis of C5aR from different species shows that a possible cause of this difference is the variation in the sequence of the first extracellular loop of the receptor. The mouse receptor contains Y at a position analogous to P-103 in the human receptor, and D at G(105). To test this hypothesis, we expressed human C5aR mutants ((PY)-Y-103, G(105)D and the double mutant, (PY)-Y-103/G(105)D) in RBL-2H3 cells and investigated the effects of these mutations on binding affinity and receptor activation. All three mutant receptors had a higher affinity for human C5a than the wild-type receptor, but showed no significant difference in the ability of F-[OPchaWR] to inhibit human C5a binding. However, all of the mutant receptors had substantially lower affinities for the weak agonist, C5a des Arg(74) (C5adR(74)), and two altered receptors (G(105)D and (PY)-Y-103/G(105)D) had much lower affinities for the C-terminal C5a agonist peptide analogue, L-tyrosine-serine-phenylalanine-lysine-proline-methionine-proline-leucine-D-alanine-arginine (YSFKPMPLaR). Although it is unlikely that differences at these residues are responsible for variations in the potency of F-[OPchaWR] across species, residues in the first extracellular loop are clearly involved in the recognition of both C5a and C5a agonists. The complex effects of mutating these residues on the affinity and response to C5a, C5adR(74), and the peptide analogues provide evidence of different binding modes for these ligands on the C5aR. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Transgenic plants of the model legume Lotus japonicus were regenerated by hypocotyl transformation using a bar gene as a selectable marker. The bar encodes for Phosphinothricin Acetyl Transferase that detoxifies phosphinothricin (PPT), the active ingredient of herbicides such as Ignite (AgrEvo) and Basta (Hoechst). Transgenic L. japonicus plants resistant to PPT were positive upon PCR by bar gene-specific primers. In 5 out of 7 independent lines tested, PPT resistance segregated as a single dominant allele indicating a single T-DNA insertion into the plant genome. All regenerated plants were fertile and void of visible somaclonal abnormalities contrary to 14% infertility when antibiotic selectable markers were used. The lack of somaclonal variation, ease of PPT application and low cost of PPT makes this protocol an attractive alternative for the regeneration of transgenic L. japonicus. The production of PPT herbicide-resistant L. japonicus plants may have significant commercial applications in crop production.
Resumo:
E-cadherin is a major adherens junction protein of epithelial cells, with a central role in cell-cell adhesion and cell polarity. Newly synthesized E-cadherin is targeted to the basolateral cell surface, We analyzed targeting information in the cytoplasmic tail of E-cadherin by utilizing chimeras of E-cadherin fused to the ectodo- main of the interleukin-2 alpha (IL-2 alpha) receptor expressed in Madin-Darby canine kidney and LLC-PK1 epithelial cells, Chimeras containing the full-length or membrane-proximal half of the E-cadherin cytoplasmic tail were correctly targeted to the basolateral domain. Sequence analysis of the membrane-proximal tail region revealed the presence of a highly conserved dileucine motif, which was analyzed as a putative targeting signal by mutagenesis. Elimination of this motif resulted in the loss of Tac/E-cadherin basolateral localization, pinpointing this dileucine signal as being both necessary and sufficient for basolateral targeting of E-cadherin, Truncation mutants unable to bind beta -catenin were correctly targeted, showing, contrary to current understanding, that beta -catenin is not required for basolateral trafficking. Our results also provide evidence that dileucine mediated targeting is maintained in UC-PK, cells despite the altered polarity of basolateral proteins with tyrosine-based signals in this cell line, These results provide the first direct insights into how E-cadherin is targeted to the basolateral membrane.
Resumo:
Recently, we demonstrated that mutations in the Sry-related HMG box gene Sox18 underlie vascular and hair follicle defects in the mouse allelic mutants ragged (Ra) and RaJ. Ra mice display numerous anomalies in the homozygote including, oedema, peritoneal secretions, and are almost completely naked. Sox18 and the MADS box transcription factor, Mef2C, are expressed in developing endothelial cells. Null mutants in Sox18 and Mef2c display overlapping phenotypic abnormalities, hence, we investigated the relationship between these two DNA binding proteins. We report here the direct interaction between MEF2C and SOX18 proteins, and establish that these proteins are coexpressed in vivo in endothelial cell nuclei. MEF2C expression potentiates SOX18-mediated transcription in vivo and regulates the function of the SOX18 activation domain. Interestingly, MEF2C fails to interact or co-activate transcription with the Ra or RaJ mutant SOX18 proteins. These results suggest that MEF2C and SOX18 may be important partners directing the transcriptional regulation of vascular development. (C) 2001 Academic Press.
Resumo:
The SOX family of developmental transcription factors is known to play critical roles in cell lineage specification, fate determination and differentiation during development in diverse phyla. Their importance is underscored by their involvement in a number of human diseases and mouse mutants, and by targeted mutation in mice. SOX8 is broadly expressed during development and is located on human chromosome 16p and within the t-complex on mouse chromosome 17, in the vicinity of two mutations t(w18) and t(h20). Here we analyse mutant genomic DNA to show that the Sox8 gene locus lies outside the deletion regions of both t(w18) and t(h20) and between these deletions. These data exclude Sox8 from contributing to the t(w18) and t(h20) phenotypes, and provide an additional marker for structural characterization of this complex genomic region. Copyright (C) 2001 S. Karger AG, Basel.
Resumo:
Specific point mutations in caveolin-3, a predominantly muscle-specific member of the caveolin family, have been implicated in limb-girdle muscular dystrophy and in rippling muscle disease. We examined the effect of these mutations on caveolin-3 localization and function. Using two independent assay systems, Raf activation in fibroblasts and neurite extension in PC12 cells, we show that one of the caveolin-3 point mutants, caveolin-3-C71W, specifically inhibits signaling by activated H-Ras but not by K-Ras. To gain insights into the effect of the mutant protein on H-Ras signaling, we examined the localization of the mutant proteins in fibroblastic cells and in differentiating myotubes. Unlike the previously characterized caveolin-3-DGV mutant, the inhibitory caveolin-3-C71W mutant reached the plasma membrane and colocalized with wild type caveolins. In BHK cells, caveolin-3-C71W associated with caveolae and in differentiating muscle cells with the developing T-tubule system. In contrast, the caveolin-3-P104L mutant accumulated in the Golgi complex and had no effect on H-Ras-mediated Raf activation. Inhibition by caveolin-3-C71W was rescued by cholesterol addition, suggesting that the mutant protein perturbs cholesterol-rich raft domains. Thus, we have demonstrated that a naturally occurring caveolin-3 mutation can inhibit signaling involving cholesterol-sensitive raft domains.
Resumo:
To address the hypothesis that certain disease-associated mutants of the breast-ovarian cancer susceptibility gene BRCA1 have biological activity in vivo, we have expressed a truncated Brca1 protein (trBrca1) in cell-lines and in the mammary gland of transgenic mice. Immunofluorescent analysis of transfected cell-lines indicates that trBRCA1 is a stable protein and that it is localized in the cell cytoplasm. Functional analysis of these cell-lines indicates that expression of trBRCA1 confers an increased radiosensitivity phenotype on mammary epithelial cells, consistent with abrogation of the BRCA1 pathway. MMTV-trBrca1 transgenic mice from two independent lines displayed a delay in lactational mammary gland development, as demonstrated by altered histological profiles of lobuloalveolar structures. Cellular and molecular analyses indicate that this phenotype results from a defect in differentiation, rather than altered rates of proliferation or apoptosis. The results presented in this paper are consistent with trBrca1 possessing dominant-negative activity and playing an important role in regulating normal mammary development. They may also have implications for germline carriers of BRCA1 mutations.
Resumo:
Each abdominal hemisegment of the Drosophila embryo has two sensory neurons intimately associated with a tracheal branch. During embryogenesis, the axons of these sensory neurons, termed the v'td2 neurons, enter the CNS and grow toward the brain with a distinctive pathway change in the third thoracic neuromere. We show that the axons use guidance cues that are under control of the bithorax gene complex (BX-C). Pathway defects in mutants suggest that a drop in Ultrabithorax expression permits the pathway change in the T3 neuromere, while combined Ultrabithorax and abdominal-A expression represses it in the abdominal neuromeres. We propose that the axons do not respond to a particular segmental identity in forming the pathway change; rather they respond to pathfinding cues that come about as a result of a drop in BX-C expression along the antero-posterior axis of the CNS.
Resumo:
The homeotic genes are instrumental in establishing segment-specific characteristics. In Drosophila embryos there is ample evidence that the homeotic genes are involved in establishing the differences in the pattern of sense organs between segments. The chordotonal organs are compound sense organs made up of several stretch receptive sensilla. A set of serially homologous chordotonal organs, Ich3 in the 1(st) thoracic segment, dch3 in the 2(nd) and 3(rd) thoracic segments and Ich5 in abdominal segments 1 to 7, is composed of different numbers of sensilla with different positions and orientations. Here we examine this set of sense organs and a companion set, vchA/B and vch 1, in the wild type and mutants for Sex combs reduced, Antennapedia, Ultrabithorax, and abdominal-A, using immunostaining. Mutant phenotypes indicate that Ultrabithorax and abdominal-A in particular influence the formation of these sense organs. Differential expression of abdominal-A and Ultrabithorax within compartments of individual parasegments can precisely modulate the types of sense organs that will arise from a segment.
Resumo:
A system for expressing site-directed mutants of the molybdenum enzyme dimethyl sulfoxide reductase from Rhodobacter capsulatus in the natural host was constructed. This system was used to Generate and express dimethyl sulfoxide reductase with a Y114F mutation. The Y114F mutant had an increased k(cat) and increased K-m toward both dimethyl sulfoxide and trimethylamine N-oxide compared to the native enzyme, and the value of k(cat)/K-m was lower for both substrates in the mutant enzyme. The Y114F mutant, as isolated, was able to oxidize dimethyl sulfide with phenazine ethosulfate as the electron acceptor but with a lower k(cat) than that of the native enzyme. The pH optimum of dimethyl sulfide: acceptor oxidoreductase activity in the Y114F mutant was shown to be shifted by +1 pH unit compared to the native enzyme. The Y114F mutant did not form a pink complex with dimethyl sulfide, which is characteristic of the native enzyme. The mutant enzyme showed a large increase in the K-d for DMS. Direct electrochemistry showed that the Mo(V)/Mo(IV) couple was unaffected by the Y114F mutant, but the midpoint potential of the Mo(VI)/Mo(V) couple was raised by about 50 mV. These data confirm that the Y114 residue plays a critical role in oxidation-reduction processes at the molybdenum active site and in oxygen atom transfer associated with sulfoxide reduction.