824 resultados para Basal Metabolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For over 40 years, the fluoropyrimidine 5-fluorouracil (5-FU) has remained the central agent in therapeutic regimens employed in the treatment of colorectal cancer and is frequently combined with the DNA-damaging agents oxaliplatin and irinotecan, increasing response rates and improving overall survival. However, many patients will derive little or no benefit from treatment, highlighting the need to identify novel therapeutic targets to improve the efficacy of current 5-FU-based chemotherapeutic strategies. dUTP nucleotidohydrolase (dUTPase) catalyzes the hydrolysis of dUTP to dUMP and PPi, providing substrate for thymidylate synthase (TS) and DNA synthesis and repair. Although dUTP is a normal intermediate in DNA synthesis, its accumulation and misincorporation into DNA as uracil is lethal. Importantly, uracil misincorporation represents an important mechanism of cytotoxicity induced by the TS-targeted class of chemotherapeutic agents including 5-FU. A growing body of evidence suggests that dUTPase is an important mediator of response to TS-targeted agents. In this article, we present further evidence showing that elevated expression of dUTPase can protect breast cancer cells from the expansion of the intracellular uracil pool, translating to reduced growth inhibition following treatment with 5-FU. We therefore report the implementation of in silico drug development techniques to identify and develop small-molecule inhibitors of dUTPase. As 5-FU and the oral 5-FU prodrug capecitabine remain central agents in the treatment of a variety of malignancies, the clinical utility of a small-molecule inhibitor to dUTPase represents a viable strategy to improve the clinical efficacy of these mainstay chemotherapeutic agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In healthy tissues a family of enzymes known as matrix metalloproteinases (MMPs) play an important role in regulating turnover and metabolism of connective tissue collagen. MMPs have been implicated in a wide variety of pathological conditions including periodontal disease. MMP-8 has been extensively studied in periodontal health and disease using enzyme-linked immunosorbent assay (ELISA). Although ELISA quantifies the presence of the MMP-8 protein, it is not possible to determine enzyme activity using this method. Furthermore, since members of the MMP family have poor substrate sequence specificity, a peptide substrate alone cannot differentiate the activity of MMP-8 from other MMPs that may be present in biological samples. Objectives: In the present study, a method to specifically measure MMP-8 activity in gingival crevicular fluid (GCF) samples was developed. Methods: GCF was collected from healthy patients and those with periodontal disease using Perio paper strips. Samples were stored frozen until required for analysis. A specific MMP-8 antibody was used to coat 96 well microtitre plates to selectively remove MMP-8 from the GCF samples. Following a washing step, the activity of bound MMP-8 was measured over 70 minutes using a fluorogenic (FRET) substrate. Results: GCF from healthy subjects exhibited basal MMP-8 activity but in diseased samples MMP-8 activity was significantly higher. Minimal binding of other recombinant MMPs to the specific MMP-8 antibody was observed in cross-reactivity studies. Conclusion: We show for the first time that MMP-8 activity was significantly increased in GCF from periodontitis sites compared with activity levels in healthy sites. Further studies of MMP-8 activity in GCF samples should improve our understanding of its destructive role in periodontal disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In fluvial ecosystems mineral erosion, carbon (C) and nitrogen (N) fluxes are linked via organo-mineral complexation, where dissolved organic molecules bind to mineral surfaces. Biofilms and suspended aggregates represent major aquatic microbial lifestyles whose relative importance changes predictably through fluvial networks. We tested how organo-mineral sorption affects aquatic microbial metabolism, using organo-mineral particles containing a mix of 13C, 15N-labelled amino acids. We traced 13C and 15N retention within biofilm and suspended aggregate biomass and its mineralisation. Organo-mineral complexation restricted C and N retention within biofilms and aggregates and also their mineralisation. This reduced the efficiency with which biofilms mineralise C and N by 30 % and 6 %. By contrast, organo-minerals reduced the C and N mineralisation efficiency of suspended aggregates by 41 % and 93 %. Our findings show how organo-mineral complexation affects microbial C:N stoichiometry, potentially altering the biogeochemical fate of C and N within fluvial ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic networks are highly connected and complex, but a single enzyme, O-GlcNAc transferase (OGT) can sense the availability of metabolites and also modify target proteins. We show that inhibition of OGT activity inhibits the proliferation of prostate cancer cells, leads to sustained loss of c-MYC and suppresses the expression of CDK1, elevated expression of which predicts prostate cancer recurrence (p=0.00179). Metabolic profiling revealed decreased glucose consumption and lactate production after OGT inhibition. This decreased glycolytic activity specifically sensitized prostate cancer cells, but not cells representing normal prostate epithelium, to inhibitors of oxidative phosphorylation (rotenone and metformin). Intra-cellular alanine was depleted upon OGT inhibitor treatment. OGT inhibitor increased the expression and activity of alanine aminotransferase (GPT2), an enzyme that can be targeted with a clinically approved drug, cycloserine. Simultaneous inhibition of OGT and GPT2 inhibited cell viability and growth rate, and additionally activated a cell death response. These combinatorial effects were predominantly seen in prostate cancer cells, but not in a cell-line derived from normal prostate epithelium. Combinatorial treatments were confirmed with two inhibitors against both OGT and GPT2. Taken together, here we report the reprogramming of energy metabolism upon inhibition of OGT activity, and identify synergistically lethal combinations that are prostate cancer cell specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary enzyme involved in polyphosphate (polyP) synthesis, polyP kinase (ppk), has been deleted in Pseudomonas putida KT2440. This has resulted in a threefold to sixfold reduction in polyhydroxyalkanoate (PHA) accumulation compared with the wild type under conditions of nitrogen limitation, with either temperature or oxidative (H2O2) stress, when grown on glucose. The accumulation of PHA by Δppk mutant was the same as the wild type under nitrogen-limiting growth conditions. There was no difference in polyP levels between wild-type and Δppk strains under all growth conditions tested. In the Δppk mutant proteome, polyP kinase (PPK) was undetectable, but up-regulation of the polyp-associated proteins polyP adenosine triphosphate (ATP)/nicotinamide adenine dinucleotide (NAD) kinase (PpnK), a putative polyP adenosine monophosphate (AMP) phosphotransferase (PP_1752), and exopolyphosphatase was observed. Δppk strain exhibited significantly retarded growth with glycerol as carbon and energy source (42 h of lag period compared with 24 h in wild-type strain) but similar growth to the wild-type strain with glucose. Analysis of gene transcription revealed downregulation of glycerol kinase and the glycerol facilitator respectively. Glycerol kinase protein expression was also downregulated in the Δppk mutant. The deletion of ppk did not affect motility but reduced biofilm formation. Thus, the knockout of the ppk gene has resulted in a number of phenotypic changes to the mutant without affecting polyP accumulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organophosphonates are ancient molecules that contain the chemically stable C–P bond, which is considered a relic of the reducing atmosphere on primitive earth. Synthetic phosphonates now have a wide range of applications in the agricultural, chemical and pharmaceutical industries. However, the existence of C–P compounds as contemporary biogenic molecules was not discovered until 1959, with the identification of 2-aminoethylphosphonic acid in rumen protozoa. Here, we review advances in our understanding of the biochemistry and genetics of microbial phosphonate metabolism, and discuss the role of these compounds and of the organisms engaged in their turnover within the P cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de dout., Biologia (Biologia Molecular), Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely recognized that protein restriction in utero may cause metabolic and endocrine adaptations, which may be of benefit to the neonate on a short-term basis but may cause adverse long-term conditions such as obesity, Type 2 diabetes, metabolic syndrome, hypertension and cardiovascular diseases. Adequate foetal and early post natal nutrient and energy supply is therefore essential for adult animal health, performance and life span. In this project it was investigated the progressive adaptations of the hepatic proteome in male mink offspring exposed to either a low protein (FL) or an adequate protein (FA) diet in utero fed either on a low protein (LP) or on an adequate (AP) diet from weaning until sexual maturity. Specifically, the aim was to determine the metabolic adaptations at selected phases of the animal’s first annual cycle and establish the metabolic priorities occurring during those phases. The three different morphological stages studied during the first year of development included, end of bone growth at 4 months of age, maximal fat accretion at 6 months of age and sexual maturity at 12 months of age. A reference proteome of mink liver coming from these different animal groups were generated using 2D electrophoresis coupled to MALDI-TOF analysis and the way in which dietary treatment affect their proteome was established. Approximately 330 proteins were detected in the mink liver proteome. A total of 27 comparisons were carried out between all different animal groups which resulted in 20 differentially expressed proteins. An extensive survey was conducted towards the characterization of these proteins including their subcellular localization, the biological processes in which they are involved and their molecular functions. This characterization allowed the identification of proteins in various processes including the glycolysis and fatty acid metabolism. The detailed analysis of the different dietary treatment animal groups was indicative of differences in metabolism and also to changes associated with development in mink.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado, Aquacultura e Pescas, Faculdade de Ciências e Tecnologias, Universidade do Algarve, 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de doutoramento, Biologia (Biologia Molecular), Universidade de Lisboa, Faculdade de Ciências, 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decolourisation of acid orange 7 (AO7) (C.I.15510) through co-metabolism in a microbial fuel cell by Shewanella oneidensis strain 14063 was investigated with respect to the kinetics of decolourisation, extent of degradation and toxicity of biotransformation products. Rapid decolourisation of AO7 (>98% within 30 h) was achieved at all tested dye concentrations with concomitant power production. The aromatic amine degradation products were recalcitrant under tested conditions. The first-order kinetic constant of decolourisation (k) decreased from 0.709 ± 0.05 h−1 to 0.05 ± 0.01 h−1 (co-substrate – pyruvate) when the dye concentration was raised from 35 mg l−1 to 350 mg l−1. The use of unrefined co-substrates such as rapeseed cake, corn-steep liquor and molasses also indicated comparable or better AO7 decolourisation kinetic constant values. The fully decolourised solutions indicated increased toxicity as the initial AO7 concentration was increased. This work highlights the possibility of using microbial fuel cells to achieve high kinetic rates of AO7 decolourisation through co-metabolism with concomitant electricity production and could potentially be utilised as the initial step of a two stage anaerobic/aerobic process for azo dye biotreatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis - It is not known whether the beneficial effects of exercise training on insulin sensitivity are due to changes in hepatic and peripheral insulin sensitivity or whether the changes in insulin sensitivity can be explained by adaptive changes in fatty acid metabolism, changes in visceral fat or changes in liver and muscle triacylglycerol content. We investigated the effects of 6 weeks of supervised exercise in sedentary men on these variables. Subjects and methods - We randomised 17 sedentary overweight male subjects (age 50 ± 2.6 years, BMI 27.6 ± 0.5 kg/m2) to a 6-week exercise programme (n = 10) or control group (n = 7). The insulin sensitivity of palmitic acid production rate (Ra), glycerol Ra, endogenous glucose Ra (EGP), glucose uptake and glucose metabolic clearance rate were measured at 0 and 6 weeks with a two-step hyperinsulinaemic–euglycaemic clamp [step 1, 0.3 (low dose); step 2, 1.5 (high dose) mU kg−1 min−1]. In the exercise group subjects were studied >72 h after the last training session. Liver and skeletal muscle triacylglycerol content was measured by magnetic resonance spectroscopy and visceral adipose tissue by cross-sectional computer tomography scanning. Results - After 6 weeks, fasting glycerol, palmitic acid Ra (p = 0.003, p = 0.042) and NEFA concentration (p = 0.005) were decreased in the exercise group with no change in the control group. The effects of low-dose insulin on EGP and of high-dose insulin on glucose uptake and metabolic clearance rate were enhanced in the exercise group but not in the control group (p = 0.026; p = 0.007 and p = 0.04). There was no change in muscle triacylglycerol and liver fat in either group. Conclusions/interpretation - Decreased availability of circulating NEFA may contribute to the observed improvement in the insulin sensitivity of EGP and glucose uptake following 6 weeks of moderate exercise.